• Catalogue PIGMA
  •  
  •  
  •  

A global consistent database of plankton and detritus from in situ imaging by the Underwater Vision Profiler 5

Dataset summary

Plankton and detritus are essential components of the Earth’s oceans influencing biogeochemical cycles and carbon sequestration. Climate change impacts their composition and marine ecosystems as a whole. To improve our understanding of these changes, standardized observation methods and integrated global datasets are needed to enhance the accuracy of ecological and climate models. Here, we present a global dataset for plankton and detritus obtained by two versions of the Underwater Vision Profiler 5 (UVP5). This release contains the images classified in 33 homogenized categories, as well as the metadata associated with them, reaching 3,114 profiles and ca. 8 million objects acquired between 2008-2018 at global scale. The geographical distribution of the dataset is unbalanced, with the Equatorial region (30° S - 30° N) being the most represented, followed by the high latitudes in the northern hemisphere and lastly the high latitudes in the Southern Hemisphere. Detritus is the most abundant category in terms of concentration (90%) and biovolume (95%), although its classification in different morphotypes is still not well established. Copepoda was the most abundant taxa within the plankton, with Trichodesmium colonies being the second most abundant. The two versions of UVP5 (SD and HD) have different imagers, resulting in a different effective size range to analyse plankton and detritus from the images (HD objects >600 µm, SD objects >1 mm) and morphological properties (grey levels, etc.) presenting similar patterns, although the ranges may differ. A large number of images of plankton and detritus will be collected in the future by the UVP5, and the public availability of this dataset will help it being utilized as a training set for machine learning and being improved by the scientific community. This will reduce uncertainty by classifying previously unclassified objects and expand the classification categories, ultimately enhancing biodiversity quantification.

Data tables

The data set is organised according to:

- samples : Underwater Vision Profiler 5 profiles, taken at a given point in space and time. - objects : individual UVP images, taken at a given depth along the each profile, on which various morphological features were measured and that where then classified taxonomically in EcoTaxa.

samples and objects have unique identifiers. The sample_id is used to link the different tables of the data set together. All files are Tab separated values, UTF8 encoded, gzip compressed.

samples.tsv.gz

- sample_id    <int>    unique sample identifier

- sample_name    <text>    original sample identifier

- project    <text>    EcoPart project title

- lat, lon    <float>    location [decimal degrees]

- datetime    <text>    date and time of start of profile [ISO 8601: YYYY-MM-DDTHH:MM:SSZ]

- pixel_size    <float>    size of one pixel [mm]

- uvp_model    <text>    version of the UVP: SD: standard definition, ZD: zoomed, HD: high definition

samples_volume.tsv.gz

Along a profile, the UVP takes many images, each of a fixed volume. The profiles are cut into 5 m depth bins in which the number of images taken is recorded and hence the imaged volume is known. This is necessary to compute concentrations.

- sample_id    <int>    unique sample identifier

- mid_depth_bin    <float>    middle of the depth bin (2.5 = from 0 to 5 m depth) [m]

- water_volume_imaged    <float>    volume imaged = number of full images × unit volume [L]

objects.tsv.gz

- object_id    <int>     unique object identifier

- object_name    <text>     original object identifier

- sample_id    <int>     unique sample identifier

- depth    <float>    depth at which the image was taken [m]

- mid_depth_bin    <float>    corresponding depth bin [m]; to match with samples_volumes

- taxon    <text>     original taxonomic name as in EcoTaxa; is not consistent across projects

- lineage    <text>     taxonomic lineage corresponding to that name

- classif_author    <text>     unique, anonymised identifier of the user who performed this classification

- classif_datetime    <text>     date and time at which the classification was

- group    <text>     broader taxonomic name, for which the identification is consistent over the whole dataset

- group_lineage    <text>     taxonomic lineage corresponding to this broader group

- area_mm2    <float>    measurements on the object, in real worl units (i.e. comparable across the whole dataset) …

- major_mm    <float>

- area    <float>    measurements on the objet, in [pixels] and therefore not directly comparable among the different UVP models and units

- mean    <float> …

- skeleton_area    <float>

properties_per_bin.tsv.gz

The information above allows to compute concentrations, biovolumes, and average grey level within a given depth bin. The code to do so is in `summarise_objects_properties.R`.

- sample_id    <int>     unique sample identifier

- depth_range    <text>     range of depth over which the concentration/biovolume are computed: (start,end], in [m] where `(` means not including, `]` means including

- group    <text>     broad taxonomic group

- concentration    <float>    concentration [ind/L]

- biovolume    <float>    biovolume [mm3/L]

- avg_grey    <float>    average grey level of particles [no unit; 0 is black, 255 is white]

ODV_biovolumes.txt, ODV_concentrations.txt, ODV_grey_levels.txt

This is the same information as above, formatted in a way that Ocean Data View https://odv.awi.de can read. In ODV, go to Import > ODV Spreadsheet and accept all default choices.

Images

The images are provided in a separate, much larger, zip file. They are stored with the format `sample_id/object_id.jpg`, where `sample_id` and `object_id` are the integer identifiers used in the data tables above.

Simple

Date (Publication)
2025-07-11
Date (Revision)
2025-08-27
Other citation details
Nocera Ariadna, Stemmann Lars, Babin Marcel, Biard Tristan, Coustenoble Julie, Carlotti François, Coppola Laurent, Courchet Lucas, Drago Laetitia, Elineau Amanda, Guidi Lionel, Hauss Helena, Jalabert Laëtitia, Karp-Boss Lee, Kiko Rainer, Laget Marion, Lombard Fabien, McDonnell Andrew, Merland Camille, Motreuil Solène, Panaïotis Thelma, Picheral Marc, Rogge Andreas, Waite Anya, Irisson Jean-Olivier (2025). A global consistent database of plankton and detritus from in situ imaging by the Underwater Vision Profiler 5. SEANOE. https://doi.org/10.17882/107583
Author
  Centro para el Estudio de Sistemas Marinos, CCT-CENPAT-CONICET, U9120ACD, Puerto Madryn, Chubut, Argentina Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Nocera Ariadna
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Stemmann Lars
Author
  Département de Biologie, Université Laval, Québec, Canada - Babin Marcel
Author
  Laboratoire d’Océanologie et de Géosciences (LOG), Université du Littoral Côte d’Opale, Université Lille, CNRS, IRD, UMR 8187, Wimereux, France - Biard Tristan
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Coustenoble Julie
Author
  Mediterranean Institute of Oceanography, Aix-Marseille Université, Université de Toulon, CNRS, IRD, UMR 7294, Marseille, France - Carlotti François
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France Sorbonne Université, CNRS, OSU STAMAR, UAR2017, 4 Place Jussieu, 75252 Paris CEDEX 05, France - Coppola Laurent
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Courchet Lucas
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Drago Laetitia
Author
  Sorbonne Université, CNRS, Institut de la Mer de Villefranche, IMEV, F-06230 Villefranche-sur-Mer, France - Elineau Amanda
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Guidi Lionel
Author
  GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany NORCE Norwegian Research Centre, Bergen, Norway - Hauss Helena
Author
  Sorbonne Université, CNRS, Institut de la Mer de Villefranche, IMEV, F-06230 Villefranche-sur-Mer, France - Jalabert Laëtitia
Author
  School of Marine Sciences, University of Maine, Orono, ME, USA - Karp-Boss Lee
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany - Kiko Rainer
Author
  Laboratoire d’Océanologie et de Géosciences (LOG), Université du Littoral Côte d’Opale, Université Lille, CNRS, IRD, UMR 8187, Wimereux, France - Laget Marion
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Lombard Fabien
Author
  College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA - McDonnell Andrew
Author
  Sorbonne Université, CNRS, Institut de la Mer de Villefranche, IMEV, F-06230 Villefranche-sur-Mer, France - Merland Camille
Author
  Sorbonne Université, CNRS, Institut de la Mer de Villefranche, IMEV, F-06230 Villefranche-sur-Mer, France - Motreuil Solène
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Panaïotis Thelma
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Picheral Marc
Author
  Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany - Rogge Andreas
Author
  Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada - Waite Anya
Author
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Irisson Jean-Olivier
Theme
  • plankton
  • particles
  • Underwater Vision Profiler
  • image
  • Biological oceanography
project
  • H2020 TRIATLAS (Agreement: 817578)
  • H2020 AtlantECO (Agreement: 862923)
  • H2020 Blue-Cloud (Agreement: 862409)
ODATIS aggregation parameters and Essential Variable names
  • Contaminants
  • Zooplankton
SeaDataNet Parameter Disciplines
  • Biological oceanography
Use constraints
Other restrictions
Date (Publication)
2022
Publisher
  Frontiers Media SA
Author
  Drago Laetitia
Author
  Panaïotis Thelma
Author
  Irisson Jean-Olivier
Author
  Babin Marcel
Author
  Biard Tristan
Author
  Carlotti François
Author
  Coppola Laurent
Author
  Guidi Lionel
Author
  Hauss Helena
Author
  Karp-Boss Lee
Author
  Lombard Fabien
Author
  McDonnell Andrew M. P.
Author
  Picheral Marc
Author
  Rogge Andreas
Author
  Waite Anya M.
Author
  Stemmann Lars
Author
  Kiko Rainer
Unique resource identifier
10.3389/fmars.2022.894372
Association Type
Cross reference
Initiative Type
Study
Date (Publication)
2022
Publisher
  Wiley
Author
  Dubois Cédric
Author
  Irisson Jean‐Olivier
Author
  Debreuve Eric
Unique resource identifier
10.1002/lom3.10492
Association Type
Cross reference
Initiative Type
Study
Date (Publication)
2022
Publisher
  Annual Reviews
Author
  Irisson Jean-Olivier
Author
  Ayata Sakina-Dorothée
Author
  Lindsay Dhugal J.
Author
  Karp-Boss Lee
Author
  Stemmann Lars
Unique resource identifier
10.1146/annurev-marine-041921-013023
Association Type
Cross reference
Initiative Type
Study
Date (Publication)
Unique resource identifier
10.1111/geb.13741
Association Type
Cross reference
Initiative Type
Study
Date (Publication)
Unique resource identifier
10.5194/essd-14-4315-2022
Association Type
Cross reference
Initiative Type
Study
Date (Publication)
2021
Publisher
  PANGAEA
Author
  Kiko Rainer
Author
  Picheral Marc
Author
  Antoine David
Author
  Babin Marcel
Author
  Berline L
Author
  Biard Tristan
Author
  Boss Emmanuel
Author
  Brandt Peter
Author
  Carlotti F
Author
  Christiansen Svenja
Author
  Coppola Laurent
Author
  de la Cruz Leandro
Author
  Diamond-Riquier Emilie
Author
  de Madron Xavier Durrieu
Author
  Elineau A
Author
  Gorsky G
Author
  Guidi Lionel
Author
  Hauss Helena
Author
  Irisson Jean-Olivier
Author
  Karp-Boss Lee
Author
  Karstensen Johannes
Author
  Kim Dong-gyun
Author
  Lekanoff Rachel M
Author
  Lombard Fabien
Author
  Lopes Rubens M
Author
  Marec Claudie
Author
  McDonnell Andrew
Author
  Niemeyer Daniela
Author
  Noyon Margaux
Author
  O'Daly Stephanie
Author
  Ohman Mark D
Author
  Pretty Jessica L
Author
  Rogge Andreas
Author
  Searson Sarah
Author
  Shibata Masashi
Author
  Tanaka Yuji
Author
  Tanhua Toste
Author
  Taucher Jan
Author
  Trudnowska Emilia
Author
  Turner Jessie S
Author
  Waite Anya M
Author
  Stemmann Lars
Unique resource identifier
10.1594/pangaea.924375
Association Type
Cross reference
Initiative Type
dataset
Unique resource identifier
10.17600/8010090
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
10.17600/15001200
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
10.17600/13020010
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
10.18142/131
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
10.18142/235
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
Association Type
Cross reference
Initiative Type
Platform
Unique resource identifier
10.17600/14007500
Association Type
Cross reference
Initiative Type
Platform
Metadata language
English
Topic category
  • Oceans
N
S
E
W
thumbnail


Distribution format
  • TEXTE ( )

  • IMAGE ( )

OnLine resource
Quality controlled data ( WWW:DOWNLOAD-1.0-link--download )

Data tables - 1 GB

OnLine resource
Quality controlled data ( WWW:DOWNLOAD-1.0-link--download )

Images - 33 GB

OnLine resource
DOI of the product ( WWW:LINK-1.0-http--metadata-URL )
OnLine resource
Seanoe ( rel-canonical )
Hierarchy level
Dataset
File identifier
seanoe:107583 XML
Metadata language
English
Character set
UTF8
Hierarchy level
Dataset
Date stamp
2025-08-27
Metadata standard name
ISO 19115:2003/19139
Metadata standard version
1.0
Point of contact
  Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France - Irisson Jean-Olivier
 
 

Overviews

overview

Spatial extent

N
S
E
W
thumbnail


Keywords

Biological oceanography Underwater Vision Profiler image particles plankton
ODATIS aggregation parameters and Essential Variable names
Contaminants Zooplankton

Provided by

logo
Access to the portal
Read here the full details and access to the data.

Associated resources

Not available


  •  
  •  
  •