From 1 - 10 / 151
  • This report describes the methodology used to refine the validation scenarios and the compilation of required data inputs, accounting for the different potential use cases

  • The objective of the DTOceanPlus project was to develop a software suite of open source advanced tools for the selection, development and deployment of ocean energy systems. DTOceanPlus project made it to develop and demonstrate an open source sotftware suite of second generation design tools for ocean energy technologies including sub-systems, energy capture devices and arrays. These tools support the entire technology innovation process, from concept, through development, to deployment. More broadly, the project also provided an industry standard for communicating technology descriptions throughout the sector. To complement the numerical work, an extensive market analysis of the ocean energy sector is publicly available.

  • This report is a comprehensive description of the environmental impacts related to operations and maintenance. All marine operations related to inspection, maintenance and repair lead to environmental impacts due to vessel traffic, noise emissions, handling of mooring lines, anchors and cables, etc.

  • Videos of the final restitution meeting of the results of the APPEAL project which took place face-to-face in Lorient on March 8, 2022

  • Technology readiness levels are a widely used metric of technology maturity and risk for marine renewable energy devices. To-date, a large number of device concepts have been proposed which have reached the early validation stages of development. Only a handful of mature designs have attained pre-commercial development status following prototype sea trials. In order to navigate through the aptly named “valley of death” towards commercial realisation, it is necessary for new technologies to be de-risked in terms of component durability and reliability. In this paper the scope of the reliability assessment module of the DTOcean design tool is outlined including aspects of tool integration, data provision and how prediction uncertainties are accounted for

  • Deliverable D5.2 “Site Characterisation – alpha version” of the DTOceanPlus project include the details of the Deployment Tool module: “Site Characterisation” (SC), and it represents the result of the work developed during the task 5.3 of the project. This document summarises both the functionalities as well as the more technical aspects of the code implemented for this module.

  • Marine renewable energy systems involve single or arrays of devices that are secured to the seafloor via foundations and/or anchors. These MRE devices will transmit long-term cyclic loads to the seafloor sediment or rock, which may affect seafloor material properties and hence the overall physical performance of the MRE system. The response of seafloor sediments or rock formations is uncertain for the novel MRE systems and especially large arrays of 10s to >1000s of devices. This report summarizes critical inputs and tools for the design and analysis of foundations, anchors, and the response of the seafloor materials

  • This report is the outcome of a task dedicated to specific sector standards for business management models for the ocean energy sector. The aim of this task was to define alternative business models for the sector by developing a greater understanding of these models and recommending development routes to industrial roll-out to improving the market opportunity.

  • The objectives of the DTOcean project were: • To accelerate the industrial development of knowledge related to wave and tidal energy production. • To provide design tools for the deployment of the first generation of ocean energy systems.

  • This deliverable refers to the socio-ecosystem model that has been developed