From 1 - 10 / 52
  • A coherent set of requirements have been developed for the DTOceanPlus suite of design tools based on analysis of gaps between tools in mature industries and those in the ocean energy industry, learning from the original DTOcean project, and the stakeholder expectations identified in the user consultation exercise. The technical requirements in this document are translated from the general requirements for the overall suite of tools, and specific requirements (functional, operational, user, interfacing, and data) for the Stage Gate design tool that will be developed as part of this project.

  • This document presents the first step in achieving DTOceanPlus project website’s launching.

  • This report is the outcome of a feasibility and cost-benefit analysis. The aim of this task was to conduct an economic feasibility and cost-benefit analysis, to assess the technologies and funding frameworks to support attractive business cases for both public and private funders.

  • This document summarises both the functionalities as well as the more technical aspects of the code implemented for this module. This module will provide the user with four assessments: identification of the potential presence of endangered species in the area; environmental impacts estimated using relevant metrics such as the underwater noise or the collision risk between vessels/devices and the marine wildlife; estimation of the carbon footprint of the project in terms of two mid-point indicators; information to improve the social acceptance of the project considering cost of consenting and jobs creation.

  • This document includes the details of the logistics and marine operations module of the deployment design tools. This module is responsible for designing and planning the project lifecycle phases of an ocean energy project. Reflecting the most recent experiences and best practices of the offshore wind sector, this module produces integrated solutions in respect to logistic infrastructure, comprised of vessels, equipment and ports, as well as operation durations and costs based on introduced historical weather data.

  • This document is the first annual report on dissemination and communication activities regarding DTOceanPlus project.

  • Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.

  • This document serves as the technical manual of the alpha version of the energy delivery module, including all the data requirements, main functions, interfaces and all pertinent technical details.

  • The present document summarises both the functionalities, supporting theory, as well as the more technical aspects of the code implemented for this module. This module will provide the user with a set of metrics and assessments, such as the levelized cost of energy and internal rate of return, relevant to the techno-economic and financial assessments of wave and tidal renewable energy projects at different stages of development. A set of complementary metrics have been included, representing the costs of the systems against a set of benchmark values.

  • A coherent set of functional and technical requirements have been developed for the DTOceanPlus suite of design tools based on analysis of gaps between the current state-of-the-art tools, learning from the original DTOcean project, and the stakeholder expectations identified in the user consultation survey. The technical requirements in this document are translated from the general requirements for the overall suite of tools, and specific requirements (functional, operational, user, interfacing, and data) for the Structured Innovation design tool that has been developed as part of this project. These requirements relate to detailed technical requirements of the technology and environment, for the development, maintenance, support and execution of the software specifications to best meet the needs of the ocean energy industry.