From 1 - 10 / 107
  • The DTOceanPlus project has develop an open-source integrated suite of 2nd generation design tools for ocean energy technologies. The tools support the entire technology innovation and advancement process from concept, through development, to deployment, and is applicable at a range of levels: sub-system, device, and array. As one of the first tasks in the project, researchers at The University of Edinburgh conducted a consultation exercise, with the support of DTOceanPlus partners. This consultation addressed potential users and other key stakeholders for the DTOceanPlus tools, to identify and clarify their needs and requirements. A webinar was held initially, to introduce both the DTOceanPlus tools and the consultation. In addition to an online questionnaire, a series of individual interviews were held to obtain more nuanced input from key stakeholders. Opinions from over 70 industry professionals from a wide range of backgrounds were collated and analysed as part of the consultation. This includes representation of the four stakeholder categories identified: - Public funders, commercial investors, and insurance providers, - Innovators and developers, - Project developers, utilities, and supply chain, and - Policy makers, regulators, and standardisation bodies. Of the overall software characteristics considered, usability followed by flexibility & expandability then modularity were seen as most important. The proposed tools will need to deal with varying degrees of complexity, both at different stages in the project lifecycle and also for different user requirements. Several responses stressed the importance of linkages between the tools, and with external software. Nearly all respondents (>85%) indicated that they were likely or very likely to use DTOceanPlus at some stage in the project lifecycle. The results from the consultation exercise are presented in this report.

  • Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.

  • Database of images collected at ABIOP monitoring sites (UTLN = Mola buoy offshore Banyuls, SEMREV = special marks east and north, UN = biocolmar buoy) + report on biofouling characterisation (rapport_taxo_ABIOP_provisoire)

  • The main objective of this atlas is to summarise the knowledge acquired on biofouling, and more generally on communities of living organisms on hard substrates, available today in mainland France and the French overseas territories, in order to anticipate the issues that this phenomenon will pose in an ORE context. The atlas is based on the most exhaustive bibliographical analysis possible, including A-level scientific articles, reports (training courses, monitoring, studies), and works presenting the results of studies conducted in French waters

  • The objective of Task 4.3 was to carry out the testing of the Stage Gate design tool in order to verify that it meets all the previously defined requirements (in WP2 and T4.1). This report documents the outcome of T4.3 “Verification of the Stage Gate design tool.”

  • This document is the second annual report on dissemination and communication activities regarding DTOceanPlus project.

  • This document is the first annual report on dissemination and communication activities regarding DTOceanPlus project.

  • This document collects the main guidelines, standards and procedures applicable to the implementation of the tools and modules in the DTOcean+ suite.

  • The objective of the DiMe project was to improve the characterisation of extreme sea states with breaking waves by combining observations and modelling.

  • This report provides a critical evaluation of the ocean energy sector’s legal, institutional, and political frameworks with an identification and analysis of barriers and enabling factors for the deployment of ocean energy.