From 1 - 10 / 167
  • The present document refines the previous version submitted in October 2019, updates the initial assumptions, and depicts more clearly the exploitation routes and actions to reduce risks.

  • Database of images collected at ABIOP monitoring sites (UTLN = Mola buoy offshore Banyuls, SEMREV = special marks east and north, UN = biocolmar buoy) + report on biofouling characterisation (rapport_taxo_ABIOP_provisoire)

  • This report describes the methodology used to define the “validation scenarios”, accounting for the different potential use cases. Given the large number of permutations of tools, use cases, and the set of minimum validation requirements, the number of validation scenarios has been reduced to a number that can be run during the life of the DTOceanPlus project but that are sufficient to fully demonstrate the functionality of the DTOceanPlus suite of tools. The selection process, based on a successive approximation approach, has led to the cases that the potential users in the DTOceanPlus consortium have considered as the most relevant for the sector. In Section 4 of the document, the selected validation scenarios is described; the definition of these scenarios has been completed during the project to ensure that the most updated information is used.

  • This document defines three reference cases of floating windfarms, and failure scenarios which will be used as input data for tasks 4.2 and 4.3.

  • The gyre index constructed here from satellite altimetry is related to core aspects of the North Atlantic subpolar gyre, meridional overturning circulation, hydrographic properties in the Atlantic inflows toward the Arctic, and in marine ecosystems in the northeast Atlantic Ocean. The data series spans the period January 1993 to September 2018. Data description: Monthly gyre index from January 1993 until September 2018. The data is provided in one comma separated value (csv) file with the following entries on each row: year, month, index value. The index is normalized, i.e. it has a zero mean and unit standard deviation. Positive (negative) gyre index reflects stronger (weaker) than average surface circulation of the North Atlantic subpolar gyre.

  • This study is a numerical experiment to evaluate the sensitivity and specificity of a set of ecosystem indicators, including ANS, to fishing pressure.

  • The purpose of this table is to present the best available abundance estimates for cetacean species in areas of relevance to the work of NAMMCO. It is intended to be used as a starting point for researchers, and the original sources are provided if additional information is required. The Scientific Committee of NAMMCO maintains a Working Group on Abundance Estimates, composed of invited experts in the field as well as some Committee members. This Working Group meets periodically to review new abundance estimates from recent surveys or, in some cases, re-analyses of older data. The reports of the Working Group are brought to the Scientific Committee at their annual meetings, and used to formulate advice on stock status, allowable removals or other matters. In most cases, the Scientific Committee will formally endorse estimates approved by the Working Group, and if so, this is indicated on the Table. Some estimates have been endorsed by the Scientific Committee of the International Whaling Commission (IWC).

  • The data management plan covers the complete research data life cycle. It describes the types of data that will be generated or collected during the project, the standards that will be used, how the data will be preserved and what parts of the datasets will be shared for verification or reuse.

  • The Structured Innovation (SI) design tool forms part of the DTOceanPlus suite of second-generation open source design tools for ocean energy. The SI tool comprises innovation methodologies which can enhance concept creation and selection in ocean energy systems (including sub-systems, energy capture devices and arrays), enabling a structured approach to address complex ocean energy engineering challenges where design options are numerous, and thus it can facilitate efficient evolution from concept to commercialisation.

  • A coherent set of functional and technical requirements have been developed for the DTOceanPlus suite of design tools based on analysis of gaps between the current state-of-the-art tools, learning from the original DTOcean project, and the stakeholder expectations identified in the user consultation survey. The technical requirements in this document are translated from the general requirements for the overall suite of tools, and specific requirements (functional, operational, user, interfacing, and data) for the Deployment design tool that will be developed as part of this project.