/Documents/Project sheet
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
status
-
The objective of the ABIOP project was to develop biofouling characterisation and quantification methods to make the design and maintenance of ORE systems more reliable. ABIOP has identified the research needs that will enable better identification and management of the risks relating to the ORE components most sensitive to biofouling. Initial in situ measurements were also carried out to characterise biocolonisation in the Atlantic and Mediterranean from an engineering and environmental point of view. The necessary additional studies are being carried out within the framework of the ABIOP+ project.
-
The objective of the TROPHIK project was to model the role of offshore wind turbines and other anthropogenic activities in modifying the functioning of thefood webs of the Bay of Seine by taking climate change into account. TROPHIK has initiated a methodology to move from the sectoral vision of environmental impact studies to a functional and holistic approach. The analysis of the sensitivity of the functioning of the food web to the development of offshore wind farms represents a solid basis for recommending new areas of implantation. This approach will be completed within the framework of APPEAL and WINDSERV by integrating the societal and economic environment as well as biogeochemical forcings
-
The objective of the DTOceanPlus project was to develop a software suite of open source advanced tools for the selection, development and deployment of ocean energy systems. DTOceanPlus project made it to develop and demonstrate an open source sotftware suite of second generation design tools for ocean energy technologies including sub-systems, energy capture devices and arrays. These tools support the entire technology innovation process, from concept, through development, to deployment. More broadly, the project also provided an industry standard for communicating technology descriptions throughout the sector. To complement the numerical work, an extensive market analysis of the ocean energy sector is publicly available.
-
The objectives of the ABIOP+ project were to : • Provide characterisation protocols for biofouling on cable and mooring lines materials which are very vulnerable to this biological process, in order to collect quantitative in-situ data. • Inventory existing fouling management methods and test the solutions best suited for floating offshore wind turbines.
-
The objective of the CARAVELE project was to improve the characterisation of extreme winds by combining atmospheric models with satellite and in-situ observations.
-
The objective of the APPEAL project was to develop an integrated approach to measure the effects of floating offshore wind farms on the functioning of coastal ecosystems.
-
The objectives of the AESTUS project were: • To develop and finalise the tools and procedures necessary to create relevant databases. • To analyse these databases to acquire new knowledge on turbulent phenomena within high intensity flows that can be used by engineering companies for their design studies.
-
The objective of the BENTHOSCOPE project was to diagnose the state and evolution of benthic communities in a rocky marine habitat by listening to the sounds they produce, similar to the stethoscope in the medical field.
-
The objective of the ARCWIND project was to assess the feasibility of floating wind farms in deep waters in the Eastern Atlantic.
-
The objective of the DiMe project was to improve the characterisation of extreme sea states with breaking waves by combining observations and modelling.