GHRSST
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
status
Resolution
-
A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Advanced Very High Resolution Radiometer (AVHRR) on the European Meteorological Operational-A (MetOp-A; launched 19 Oct 2006) ) satellite produced and used operationally in oceanographic analyses and forecasts by the US Naval Oceanographic Office (NAVO). The MetOp satellite program is a European undertaking providing weather data services for monitoring climate and improving weather forecasts. It was jointly established by the European Space Agency (ESA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) with a contribution by the US National Oceanic and Atmospheric Administration (NOAA) of an AVHRR sensor identical to those flying on the family of Polar Orbiting Environmental Satellites (POES). AVHRR instruments measure the radiance of the Earth in 5 (or 6) relatively wide spectral bands. The first two are centered around the red (0.6 micrometer) and near-infrared (0.9 micrometer) regions, the third one is located around 3.5 micrometer, and the last two sample the emitted thermal radiation, around 11 and 12 micrometers, respectively. The legacy 5 band instrument is known as AVHRR/2 while the more recent version, the AVHRR/3 (first carried on the NOAA-15 platform), acquires data in a 6th channel located at 1.6 micrometer. Typically the 11 and 12 micron channels are used to derive SST sometimes in combination with the 3.5 micron channel. The MetOp-A platform is sun synchronous generally viewing the same earth location twice a day (latitude dependent) due to the relatively large AVHRR swath of approximately 2400 km. The highest ground resolution that can be obtained from the current AVHRR instruments is 1.1 km at nadir. This particular dataset is produced from Global Area Coverage (GAC) data that are derived from an on-board sample averaging of the full resolution global AVHRR data. Four out of every five samples along the scan line are used to compute on average value and the data from only every third scan line are processed, yielding an effective 4 km resolution at nadir. Further binning and averaging of these pixels results in a final dataset resolution of 8.8 km.
-
A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P data set containing multi-channel Sea Surface Temperature (SST) retrievals derived in real-time from the Advanced Very High Resolution Radiometer (AVHRR) level-1B data from the Meteorological Operational-A (MetOp-A) satellite. The SST data in this data set are used operationally in oceanographic analyses and forecasts by the US Naval Oceanographic Office (NAVO). The MetOp satellite program is a European multi-satellite program to provide weather data services for monitoring climate and improving weather forecasts. MetOp-A, MetOp-B and Metop-C were respectively launched on 19 Oct 2006, 17 September 2012 and 7 November 2018. The program was jointly established by the European Space Agency (ESA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) with the US National Oceanic and Atmospheric Administration (NOAA) contributing the AVHRR sensor. AVHRR instruments measure the radiance of the Earth in 5 (or 6) relatively wide spectral bands. The first two are centered around the red (0.6 micron) and near-infrared (0.9 micron) regions, the third one is located around 4 (3.6) micron, and the last two sample the emitted thermal radiation, around 11 and 12 micron, respectively. The legacy 5 band instrument is known as AVHRR/2 while the more recent version, the AVHRR/3 (first carried on the NOAA-15 platform), acquires data in a 6th channel located at 1.6 micron. Typically, the 11 and 12 micron channels are used to derive SST sometimes in combination with the 3.5 micron channel. The swath of the AVHRR sensor is a relatively large 2400 km. All MetOp platforms are sun synchronous and generally view the same earth location twice a day (latitude dependent). The ground native resolution of the AVHRR instruments is approximately 1.1 km at nadir and degrades off nadir. This particular data set is produced from legacy Global Area Coverage (GAC) data that are derived from a sample averaging of the full resolution global AVHRR data. Four out of every five samples along the scan line are used to compute on average value and the data from only every third scan line are processed, yielding an effective 4 km spatial resolution at nadir. The v2.0 is the updated version from current v1.0 with extensive algorithm improvements and upgrades. The major improvements include: 1) Significant changes in contaminant/cloud detection; 2) Increased the spatial resolution from 9 km to 4 km; 3) Updated compliance with GDS2, ACDD 1.3, and CF 1.6; and 4) Removed the dependency on the High-resolution Infrared Radiation Sounder (HIRS) sensor (only available to MetOp-A/B), thus allowing for the consistent inter-calibration and the processing of MetOp-A/B/C data Version Description:
-
A Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Infrared Atmospheric Sounding Interferometer (IASI) on the European Meteorological Operational-B (MetOp-B)satellite (launched 17 Sep 2012). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT),Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near realtime from METOP/IASI. The Infrared Atmospheric Sounding Interferometer (IASI) measures inthe infrared part of the electromagnetic spectrum at a horizontal resolution of 12 km at nadir up to40km over a swath width of about 2,200 km. With 14 orbits in a sun-synchronous mid-morningorbit (9:30 Local Solar Time equator crossing, descending node) global observations can beprovided twice a day. The SST retrieval is performed and provided by the IASI L2 processor atEUMETSAT headquarters. The product format is compliant with the GHRSST Data Specification(GDS) version 2. Version Description:
-
A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Infrared Atmospheric Sounding Interferometer (IASI) on the European Meteorological Operational-A (MetOp-A)satellite (launched 19 Oct 2006). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT),Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near realtime from METOP/IASI. The Infrared Atmospheric Sounding Interferometer (IASI) measures inthe infrared part of the electromagnetic spectrum at a horizontal resolution of 12 km at nadir up to40km over a swath width of about 2,200 km. With 14 orbits in a sun-synchronous mid-morningorbit (9:30 Local Solar Time equator crossing, descending node) global observations can beprovided twice a day. The SST retrieval is performed and provided by the IASI L2 processor atEUMETSAT headquarters. The product format is compliant with the GHRSST Data Specification(GDS) version 2.
-
A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Advanced Very High Resolution Radiometer (AVHRR) on the European Meteorological Operational-A (MetOp-A)satellite (launched 19 Oct 2006). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from Metop/AVHRR. Global AVHRR level 1b data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. SST is retrieved from the AVHRR infrared channels (3.7, 10.8 and 12.0 micrometer) using a multispectral algorithm. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiatiave transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. This product is delivered at full resolution in satellite projection as metagranule corresponding to 3 minutes of acquisition. The product format is compliant with the GHRSST Data Specification (GDS) version 2.
-
A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Advanced Very High Resolution Radiometer (AVHRR) on the European Meteorological Operational-B (MetOp-B) satellite (launched 17 Sep 2012). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from Metop/AVHRR. Global AVHRR level 1b data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. SST is retrieved from the AVHRR infrared channels (3.7, 10.8 and 12.0 micrometer) using a multispectral algorithm. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiatiave transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. This product is delivered at full resolution in satellite projection as metagranule corresponding to 3 minutes of acquisition. The product format is compliant with the GHRSST Data Specification (GDS) version 2. Version Description:
-
NOAA-20 (hereafter, N20; also known as JPSS-1 or J1 prior to launch) is the second satellite in the US National Oceanic and Atmospheric Administration (NOAA) latest generation Joint Polar Satellite System (JPSS). N20 was launched on November 18, 2017. In conjunction with the first US satellite in JPSS series, Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011, N20 form the new NOAA polar constellation. The ACSPO N20/VIIRS L3U (Level 3 Uncollated) product is a gridded version of the ACSPO N20/VIIRS L2P product available here https://podaac.jpl.nasa.gov/dataset/VIIRS_N20-OSPO-L2P-v2.61. The L3U output files are 10-minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 500MB/day. Fill values are reported at all invalid pixels, including pixels with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), the following layers are reported: SSTs, ACSPO clear-sky mask (ACSM; provided in each grid as part of l2p_flags, which also includes day/night, land, ice, twilight, and glint flags), NCEP wind speed, and ACSPO SST minus reference (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0 ). Only L2P SSTs with QL=5 were gridded, so all valid SSTs are recommended for the users. Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with valid SST. The ACSPO VIIRS L3U product is monitored and validated against iQuam in situ data (Xu and Ignatov, 2014) in SQUAM (Dash et al, 2010).
-
A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis is produced daily on a 0.25 degree grid at the NOAA National Centers for Environmental Information. This product uses optimal interpolation (OI) by interpolating and extrapolating SST observations from different sources, resulting in a smoothed complete field. The sources of data are satellite (AVHRR) and in situ platforms (i.e., ships, buoys, and Argo floats above 5m depth), and the specific datasets employed may change over time. In the regions with sea-ice concentration higher than 30%, freezing points of seawater are used to generate proxy SSTs. A preliminary version of this file is produced in near-real time (1-day latency), and then replaced with a final version after 2 weeks. The v2.1 is updated from the AVHRR_OI-NCEI-L4-GLOB-v2.0 data. Major improvements include: 1) In-Situ ship and buoy data changed from the NCEP Traditional Alphanumeric Codes (TAC) to the NCEI merged TAC + Binary Universal Form for the Representation (BUFR) data, with large increase of buoy data included to correct satellite SST biases; 2) Addition of Argo float observed SST data as well, for further correction of satellite SST biases; 3) Satellite input from the METOP-A and NOAA-19 to METOP-A and METOP-B, removing degraded satellite data; 4) Revised ship-buoy SST corrections for improved accuracy; and 5) Revised sea-ice-concentration to SST conversion to remove warm biases in the Arctic region (Banzon et al. 2020). These updates only apply to granules after Jan. 1st, 2016. The data pre 2016 are still the same as v2.0 except for metadata upgrades. Version Description:
-
A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA National Centers for Environmental Information. This product uses optimal interpolation (OI) by interpolating and extrapolating SST observations from different sources, resulting in a smoothed complete field. The sources of data are satellite (AVHRR) and in situ platforms (i.e., ships and buoys), and the specific datasets employed may change over. At the marginal ice zone, sea ice concentrations are used to generate proxy SSTs. A preliminary version of this file is produced in near-real time (1-day latency), and then replaced with a final version after 2 weeks. Note that this is the AVHRR-ONLY (AVHRR-OI), available from September 1, 1981, but there is a companion SST product that includes microwave satellite data, available from June 2002.
-
A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical Oceanography DAAC using wavelets as basis functions in an optimal interpolation approach on a global 0.25 degree grid. The version 4 Multiscale Ultrahigh Resolution (MUR) L4 analysis is based upon nighttime GHRSST L2P skin and subskin SST observations from several instruments including the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced Microwave Scanning Radiometer 2 on GCOM-W1, the Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radiometer, the Advanced Very High Resolution Radiometer (AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA iQuam project. The ice concentration data are from the archives at the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) High Latitude Processing Center and are also used for an improved SST parameterization for the high-latitudes. The dataset also contains an additional SST anomaly variable derived from a MUR climatology (average between 2003 and 2014). This dataset was originally funded by the NASA MEaSUREs program (http://earthdata.nasa.gov/our-community/community-data-system-programs/measures-projects ) and the NASA CEOS COVERAGE project and created by a team led by Dr. Toshio M. Chin from JPL. It adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.