marine-resources
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
-
'''DEFINITION''' Significant wave height (SWH), expressed in metres, is the average height of the highest third of waves. This OMI provides global maps of the seasonal mean and trend of significant wave height (SWH), as well as time series in three oceanic regions of the same variables and their trends from 2002 to 2020, calculated from the reprocessed global L4 SWH product (WAVE_GLO_PHY_SWH_L4_MY_014_007). The extreme SWH is defined as the 95th percentile of the daily maximum SWH for the selected period and region. The 95th percentile is the value below which 95% of the data points fall, indicating higher than normal wave heights. The mean and 95th percentile of SWH (in m) are calculated for two seasons of the year to take into account the seasonal variability of waves (January, February and March, and July, August and September). Trends have been obtained using linear regression and are expressed in cm/yr. For the time series, the uncertainty around the trend was obtained from the linear regression, while the uncertainty around the mean and 95th percentile was bootstrapped. For the maps, if the p-value obtained from the linear regression is less than 0.05, the trend is considered significant. '''CONTEXT''' Grasping the nature of global ocean surface waves, their variability, and their long-term interannual shifts is essential for climate research and diverse oceanic and coastal applications. The sixth IPCC Assessment Report underscores the significant role waves play in extreme sea level events (Mentaschi et al., 2017), flooding (Storlazzi et al., 2018), and coastal erosion (Barnard et al., 2017). Additionally, waves impact ocean circulation and mediate interactions between air and sea (Donelan et al., 1997) as well as sea-ice interactions (Thomas et al., 2019). Studying these long-term and interannual changes demands precise time series data spanning several decades. Until now, such records have been available only from global model reanalyses or localised in situ observations. While buoy data are valuable, they offer limited local insights and are especially scarce in the southern hemisphere. In contrast, altimeters deliver global, high-quality measurements of significant wave heights (SWH) (Gommenginger et al., 2002). The growing satellite record of SWH now facilitates more extensive global and long-term analyses. By using SWH data from a multi-mission altimetric product from 2002 to 2020, we can calculate global mean SWH and extreme SWH and evaluate their trends, regionally and globally. '''KEY FINDINGS''' From 2002 to 2020, positive trends in both Significant Wave Height (SWH) and extreme SWH are mostly found in the southern hemisphere (a, b). The 95th percentile of wave heights (q95), increases faster than the average values, indicating that extreme waves are growing more rapidly than average wave height (a, b). Extreme SWH’s global maps highlight heavily storms affected regions, including the western North Pacific, the North Atlantic and the eastern tropical Pacific (a). In the North Atlantic, SWH has increased in summertime (July August September) but decreased in winter. Specifically, the 95th percentile SWH trend is decreasing by 2.1 ± 3.3 cm/year, while the mean SWH shows a decrease of 2.2 ± 1.76 cm/year. In the south of Australia, during boreal winter, the 95th percentile SWH is increasing at 2.6 ± 1.5 cm/year (c), with the mean SWH increasing by 0.5 ± 0.66 cm/year (d). Finally, in the Antarctic Circumpolar Current, also in boreal winter, the 95th percentile SWH trend is 3.2 ± 2.14 cm/year (c) and the mean SWH trend is 1.7 ± 0.84 cm/year (d). These patterns highlight the complex and region-specific nature of wave height trends. Further discussion is available in A. Laloue et al. (2024). '''DOI (product):''' https://doi.org/10.48670/mds-00352
-
'''DEFINITION''' The temporal evolution of thermosteric sea level in an ocean layer is obtained from an integration of temperature driven ocean density Static product based on Sentinel-2 (images from 202X to 2024). There are 4 bathymetry datasets, three from three different analysis methods and a merged one. Three methods: intertidal, optical (radiation transfer equation), wave kinematics (depth inversion from wave kinematics). It includes 4 datasets, with 2 variables each. The bathymetry for intertidal, optical, wave kinematics methods and the merged of the three, plus the quality indexes for each. '''DOI (product):''' https://doi.org/10.48670/mds-00364
-
'''Short description:''' Arctic L3 sea ice product providing concentration, stage-of-development and floe size information retrieved from Sentinel-1 and RCM SAR imagery and GCOM-W AMSR2 microwave radiometer data using a deep learning algorithm and delivered on a 0.5 km grid. '''DOI (product) :''' https://doi.org/10.48670/mds-00343
-
'''DEFINITION''' The OMI_EXTREME_WAVE_MEDSEA_swh_mean_and_anomaly_obs indicator is based on the computation of the 99th and the 1st percentiles from in situ data (observations). It is computed for the variable significant wave height (swh) measured by in situ buoys. The use of percentiles instead of annual maximum and minimum values, makes this extremes study less affected by individual data measurement errors. The percentiles are temporally averaged, and the spatial evolution is displayed, jointly with the anomaly in the target year. This study of extreme variability was first applied to sea level variable (Pérez Gómez et al 2016) and then extended to other essential variables, sea surface temperature and significant wave height (Pérez Gómez et al 2018). '''CONTEXT''' Projections on Climate Change foresee a future with a greater frequency of extreme sea states (Stott, 2016; Mitchell, 2006). The damages caused by severe wave storms can be considerable not only in infrastructure and buildings but also in the natural habitat, crops and ecosystems affected by erosion and flooding aggravated by the extreme wave heights. In addition, wave storms strongly hamper the maritime activities, especially in harbours. These extreme phenomena drive complex hydrodynamic processes, whose understanding is paramount for proper infrastructure management, design and maintenance (Goda, 2010). In recent years, there have been several studies searching possible trends in wave conditions focusing on both mean and extreme values of significant wave height using a multi-source approach with model reanalysis information with high variability in the time coverage, satellite altimeter records covering the last 30 years and in situ buoy measured data since the 1980s decade but with sparse information and gaps in the time series (e.g. Dodet et al., 2020; Timmermans et al., 2020; Young & Ribal, 2019). These studies highlight a remarkable interannual, seasonal and spatial variability of wave conditions and suggest that the possible observed trends are not clearly associated with anthropogenic forcing (Hochet et al. 2021, 2023). For the Mediterranean Sea an interesting publication (De Leo et al., 2024) analyses recent studies in this basin showing the variability in the different results and the difficulties to reach a consensus, especially in the mean wave conditions. The only significant conclusion is the positive trend in extreme values for the western Mediterranean Sea and in particular in the Gulf of Lion and in the Tyrrhenian Sea. '''COPERNICUS MARINE SERVICE KEY FINDINGS''' The mean 99th percentiles showed in the area present a range from 1.5-3.5 in the Gibraltar Strait and Alboran Sea with 0.25-0.6 of standard deviation (std), 2-5m in the East coast of the Iberian Peninsula and Balearic Islands with 0.2-0.4m of std, 3-4m in the Aegean Sea with 0.4-0.6m of std to 2-5m in the Gulf of Lyon with 0.3-0.5m of std. Results for this year show a slight negative anomaly in the Gibraltar Strait reaching -0.95m and the Gulf of Lyon (-0.3/-0.7m) slightly over the std in the respective areas, close to zero anomaly in the Aegean Sea (-0.1m) and slight positive or negative anomalies in the East coast of the Iberian Peninsula and Balearic Islands (-0.4/+0.3m) inside the margin of the std. '''DOI (product):''' https://doi.org/10.48670/moi-00263
-
'''This product has been archived''' For operationnal and online products, please visit https://marine.copernicus.eu '''Short description:''' Experimental altimeter satellite along-track sea surface heights anomalies (SLA) computed with respect to a twenty-year [1993, 2012] mean with a 5Hz (~1.3km) sampling. All the missions are homogenized with respect to a reference mission (see QUID document or http://duacs.cls.fr [http://duacs.cls.fr] pages for processing details). The product gives additional variables (e.g. Mean Dynamic Topography, Dynamic Atmosphic Correction, Ocean Tides, Long Wavelength Errors, Internal tide, …) that can be used to change the physical content for specific needs This product was generated as experimental products in a CNES R&D context. It was processed by the DUACS multimission altimeter data processing system. '''DOI (product) :''' https://doi.org/10.48670/moi-00137
-
'''Short description:''' For the Baltic Sea- The DMI Sea Surface Temperature reprocessed analysis provides daily gap-free sea surface temperature fields, referred as L4 product, at 0.02deg. x 0.02deg. horizontal resolution. It is produced by the DMI Optimal Interpolation (DMIOI) system (Høyer and She, 2007) to provide a high resolution (1/50deg. - approx. 2km grid resolution) daily analysis of the daily average sea surface temperature (SST) at 20 cm depth. It uses satellite data from infra-red radiometers, from the ESA SST_cci v3.0 (Embury et al., 2024) and Copernicus C3S projects, namely L2P data from (A)ATSRs, SLSTR and AVHRR for the period 1982-2021, L3U data from SLSTR and AVHRR for 2022-July 19 2024 and L2P data from SLSTR and AVHRR from July 20 2024 onward. For the Sea Ice Concentration it uses the Baltic high resolution sea ice concentration data from the Copernicus Marine Service SI TAC (SEAICE_BAL_PHY_L4_MY_011_019). '''DOI (product) :''' https://doi.org/10.48670/moi-00156
-
'''DEFINITION''' The OMI_EXTREME_WAVE_NORTHWESTSHELF_swh_mean_and_anomaly_obs indicator is based on the computation of the 99th and the 1st percentiles from in situ data (observations). It is computed for the variable significant wave height (swh) measured by in situ buoys. The use of percentiles instead of annual maximum and minimum values, makes this extremes study less affected by individual data measurement errors. The percentiles are temporally averaged, and the spatial evolution is displayed, jointly with the anomaly in the target year. This study of extreme variability was first applied to sea level variable (Pérez Gómez et al 2016) and then extended to other essential variables, sea surface temperature and significant wave height (Pérez Gómez et al 2018). '''CONTEXT''' Projections on Climate Change foresee a future with a greater frequency of extreme sea states (Stott, 2016; Mitchell, 2006). The damages caused by severe wave storms can be considerable not only in infrastructure and buildings but also in the natural habitat, crops and ecosystems affected by erosion and flooding aggravated by the extreme wave heights. In addition, wave storms strongly hamper the maritime activities, especially in harbours. These extreme phenomena drive complex hydrodynamic processes, whose understanding is paramount for proper infrastructure management, design and maintenance (Goda, 2010). In recent years, there have been several studies searching possible trends in wave conditions focusing on both mean and extreme values of significant wave height using a multi-source approach with model reanalysis information with high variability in the time coverage, satellite altimeter records covering the last 30 years and in situ buoy measured data since the 1980s decade but with sparse information and gaps in the time series (e.g. Dodet et al., 2020; Timmermans et al., 2020; Young & Ribal, 2019). These studies highlight a remarkable interannual, seasonal and spatial variability of wave conditions and suggest that the possible observed trends are not clearly associated with anthropogenic forcing (Hochet et al. 2021, 2023). In the North Atlantic, the mean wave height shows some weak trends not very statistically significant. Young & Ribal (2019) found a mostly positive weak trend in the European Coasts while Timmermans et al. (2020) showed a weak negative trend in high latitudes, including the North Sea and even more intense in the Norwegian Sea. For extreme values, some authors have found a clearer positive trend in high percentiles (90th-99th) (Young et al., 2011; Young & Ribal, 2019). '''COPERNICUS MARINE SERVICE KEY FINDINGS''' The mean 99th percentiles showed in the area present a wide range from 2.5 meters in the English Channel with 0.3m of standard deviation (std), 3-5m in the southern and central North Sea with 0.3-0.6m of std, 4 meters in the Skagerrak Strait with 0.6m of std, 6-7m in the northern North Sea with 0.4-0.5m of std to 8 meters in the NorthWest of the British Isles with 0.8-1.0m of std. Results for this year show either low positive or negative anomalies between -0.3m and +0.4m, inside the margin of the standard deviation, in the English Channel, the Skagerrak Strait and the southern and central North Sea except in the station 6200046 with a positive anomaly of 0.8m and a slight negative anomaly (-0.1/-0.5m) inside the margin of the std in the NorthWest of the British Isles and the northern North Sea. '''DOI (product):''' https://doi.org/10.48670/moi-00270
-
'''This product has been archived''' '''Short description''': You can find here the OMEGA3D observation-based quasi-geostrophic vertical and horizontal ocean currents developed by the Consiglio Nazionale delle RIcerche. The data are provided weekly over a regular grid at 1/4° horizontal resolution, from the surface to 1500 m depth (representative of each Wednesday). The velocities are obtained by solving a diabatic formulation of the Omega equation, starting from ARMOR3D data (MULTIOBS_GLO_PHY_REP_015_002 which corresponds to former version of MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012) and ERA-Interim surface fluxes. '''DOI (product) :''' https://doi.org/10.25423/cmcc/multiobs_glo_phy_w_rep_015_007
-
'''Short description:''' The C3S global Sea Surface and Sea Ice Temperature Reprocessed product provides gap-free maps of daily average SST at 20 cm depth and IST skin at 0.05deg. x 0.05deg. horizontal grid resolution, using satellite data from the ESA SST_cci v3.0 L3U data from (A)ATSRs, SLSTR and AVHRR, L2P data from the AMSRE and AMSR2 Passive Microwave Instruments (Embury et al., 2024) and L2P data from the AASTI and C3S IST CDR/ICDR v.1. The C3S level 4 SST/IST analyses were produced by running the DMI Optimal Interpolation (DMIOI) system (Høyer and She, 2007; Høyer et al., 2014; Nielsen-Englyst et al., 2023, Nielsen-Englyst et al., 2024) to provide a high resolution (1/20deg. - approx. 5km grid resolution) daily analysis of the daily average sea surface temperature (SST) at 20 cm depth and sea ice surface temperature (IST) at the surface skin to cover surface temperatures in the global ocean, the sea ice and the marginal ice zone. It uses a Multi-Source Composite Sea-Ice concentration dataset (from a combination of EUMETSAT OSI-SAF OSI-450a (Lavergne et al., 2019), OSI-458, ESA CCI Sea ice CDR, SICCI-HR-SIC, U.S. National Ice Centre’s (NIC) ice charts, Swedish Meteorological and Hydrological Institute (SHMI) and Finnish Meteorological Institute’s (FMI) ice charts used for the Baltic region) developed at DMI for the purpose of the CARRA2 project (Pan-Arctic) and extended to the South Hemisphere. The ESA SST CCI global Sea Surface Temperature Reprocessed product provides gap-free maps of daily average SST at 20 cm depth at 0.05deg. x 0.05deg. horizontal grid resolution, using satellite data from the (A)ATSRs, SLSTR and the AVHRR series of sensors (Merchant et al., 2019). The ESA SST CCI level 4 analyses were produced by running the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system (Good et al., 2020) to provide a high resolution (1/20deg. - approx. 5km grid resolution) daily analysis of the daily average sea surface temperature (SST) at 20 cm depth for the global ocean. Only (A)ATSR, SLSTR and AVHRR satellite data processed by the ESA SST CCI projects were used, giving a stable product. It also uses reprocessed sea-ice concentration data from the EUMETSAT OSI-SAF (OSI-450 and OSI-430; Lavergne et al., 2019). '''DOI (product) :''' https://doi.org/10.48670/moi-00169
-
'''This product has been archived''' '''DEFINITION''' Estimates of Ocean Heat Content (OHC) are obtained from integrated differences of the measured temperature and a climatology along a vertical profile in the ocean (von Schuckmann et al., 2018). The regional OHC values are then averaged from 60°S-60°N aiming i) to obtain the mean OHC as expressed in Joules per meter square (J/m2) to monitor the large-scale variability and change. ii) to monitor the amount of energy in the form of heat stored in the ocean (i.e. the change of OHC in time), expressed in Watt per square meter (W/m2). Ocean heat content is one of the six Global Climate Indicators recommended by the World Meterological Organisation for Sustainable Development Goal 13 implementation (WMO, 2017). '''CONTEXT''' Knowing how much and where heat energy is stored and released in the ocean is essential for understanding the contemporary Earth system state, variability and change, as the ocean shapes our perspectives for the future (von Schuckmann et al., 2020). Variations in OHC can induce changes in ocean stratification, currents, sea ice and ice shelfs (IPCC, 2019; 2021); they set time scales and dominate Earth system adjustments to climate variability and change (Hansen et al., 2011); they are a key player in ocean-atmosphere interactions and sea level change (WCRP, 2018) and they can impact marine ecosystems and human livelihoods (IPCC, 2019). '''CMEMS KEY FINDINGS''' Since the year 2005, the upper (0-700m) near-global (60°S-60°N) ocean warms at a rate of 0.6 ± 0.1 W/m2. Note: The key findings will be updated annually in November, in line with OMI evolutions. '''DOI (product):''' https://doi.org/10.48670/moi-00234
Catalogue PIGMA