Creation year

2018

503 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 503
  • '''This product has been archived''' For operationnal and online products, please visit https://marine.copernicus.eu '''DEFINITION''' The trend map is derived from version 5 of the global climate-quality chlorophyll time series produced by the ESA Ocean Colour Climate Change Initiative (ESA OC-CCI, Sathyendranath et al. 2019; Jackson 2020) and distributed by CMEMS. The trend detection method is based on the Census-I algorithm as described by Vantrepotte et al. (2009), where the time series is decomposed as a fixed seasonal cycle plus a linear trend component plus a residual component. The linear trend is expressed in % year -1, and its level of significance (p) calculated using a t-test. Only significant trends (p < 0.05) are included. '''CONTEXT''' Phytoplankton are key actors in the carbon cycle and, as such, recognised as an Essential Climate Variable (ECV). Chlorophyll concentration is the most widely used measure of the concentration of phytoplankton present in the ocean. Drivers for chlorophyll variability range from small-scale seasonal cycles to long-term climate oscillations and, most importantly, anthropogenic climate change. Due to such diverse factors, the detection of climate signals requires a long-term time series of consistent, well-calibrated, climate-quality data record. Furthermore, chlorophyll analysis also demands the use of robust statistical temporal decomposition techniques, in order to separate the long-term signal from the seasonal component of the time series. '''CMEMS KEY FINDINGS''' The average global trend for the 1997-2020 period was 0.59% per year, with a maximum value of 25% per year and a minimum value of -6.1% per year. Positive trends are pronounced in the high latitudes of both northern and southern hemisphehres. The significant increases in chlorophyll reported in 2016-2017 (Sathyendranath et al., 2018b) for the Atlantic and Pacific oceans at high latitudes continued to be observed after the 2020 extension, as well as the negative trends over the equatorial Pacific and the Indian Ocean Gyre. Note: The key findings will be updated annually in November, in line with OMI evolutions. '''DOI (product):''' https://doi.org/10.48670/moi-00230

  • This product attempt to follow up on the sea level rise per stretch of coast of the North Atlantic, over 50 years as follows: • Characterization of absolute sea level trend at annual resolution, along the coasts of EU Member States (including Outermost Regions), Canada, Faroes, Greenland, Iceland, Mexico, Morocco, Norway and USA; The stretchs or coast are defined by the administrative regions of the Atlantic Coast: • from NUTS3** administrative division for EU countries (see Eurostat), and • from GADM*** administrative divisions for non-EU countries. ** Third level of Nomenclature of Territorial Units for Statistics *** Global Administrative Areas For relative sea level trend for 50 years we extract the information from coastal tide gauges data available at each stretch of coast, if there is not a tide gauge there is a data gap. The product is Provided in tabular form and as a map layer.

  • The three digital maps provided in this product aim to assess the degree of Offshore windfarm siting suitability existing over a geographical area with a focal point where waters of France and Spain meet in Biscay Bay on 500 m depth. The maps display respectively the spatial distribution of the average and lowest windfarm siting suitability scores along with the average wind speed distribution over a time period of 10 years. They are part of a process set up to assess the fit for use quality of the currently available datasets to support a preliminary selection of potential offshore sites for wind energy development. To build these maps, GIS tools were applied to several key spatial datasets from the 5 data type domains considered in the project: Air, Marine Water, Riverbed/Seabed, Biota/Biology and Human Activities, collated during the initial stages of the project. Initially, each selected dataset was formatted and clipped to the study area extent and spatially classified according to suitability scores, to define raster layers with the variables depicting levels of current anthropogenic and environmental spatial occupation of activities, seabed depth and slope, distances to shoreline, shipping intensity, mean significant wave height, and substrate type. These pre-processed layers were employed as inputs for applying a spatial multi-criteria model using a wind farming suitability classification based on a discrete 5 grades index, ranging from Very Low up to Very High suitability. In adition to suitability maps, an average wind speed spatial distribution map for a 10 years period, at 10 m height, was obtained over the study area from the raster processing of a wind speed time series of monthly means available from daily wind analysis data. The characteristics of the datasets used in this exercise underwent an appropriateness evaluation procedure based on a comparison between their measured quality and those specified for the product. All the spatial information made available in these maps and from the subsequent appropriateness analysis of the datasets, contributes to a clearer overview of the amount of public-access baseline knowledge currently existing for the North Atlantic basin area.

  • The Oil Platform Leaks challenge attempts to determine the likely trajectory of the slick and to release rapid information on the oil movement and environmental and coastal impacts in the form of a bulletin brodcast 72 hours after the event. This bulletin indicates what information can be provided, evidencing the fitness for use of the current available marine datasets, as well as pointing out gaps in the current Emodnet data collection framework. The exercise relies on two tools operated by CLS: The OSCAR model (Oil Spill Contingency and Response, operated at CLS under license) made available by SINTEF and used to simulate the oil spill fate and weathering at water surface, in the water column and along shorelines. A QGIS system to display and cross the oil spill forecast with coastal data (information on environment and human activities). This product relises on the use of information on human activities and environmental sensitivity to establish the impact of the oïl Spill on the coastal areas.

  • Assess whether the MPA network constitutes a representative and coherent network as described in article 13 of the Marine Strategy Framework Directive 3 products were specified to achieve the second objectif of the challenge: ATLANTIC_CH02_Product_2 / Quantitative analyse of MPA coherency The product comprises 4 components: Distribution of vulnerable marine habitats : Shape represent the distribution of different vulnérable habitats Distribution biologically or ecologically significant areas (EBSAs) Critical areas of vulnerable species Distribution of indicator species The method used computes the percentage coverage between : Vulnerable habitats like carbon sinks, reef, kelp... Ecologically or biologically significant area Life critical area (feeding , breeding, migratory routes, spawning, dispersal larvea, nursery…) for indicator species Distribution of indicator species in the study area and MPA network location.

  • The average annual sediment balance per stretch of coast bordering the North Atlantic for the past 100 years.

  • '''DEFINITION''' Ocean heat content (OHC) is defined here as the deviation from a reference period (1993-20210) and is closely proportional to the average temperature change from z1 = 0 m to z2 = 2000 m depth: With a reference density of ρ0 = 1030 kgm-3 and a specific heat capacity of cp = 3980 J/kg°C (e.g. von Schuckmann et al., 2009) Averaged time series for ocean heat content and their error bars are calculated for the Iberia-Biscay-Ireland region (26°N, 56°N; 19°W, 5°E). This OMI is computed using IBI-MYP, GLO-MYP reanalysis and CORA, ARMOR data from observations which provide temperatures. Where the CMEMS product for each acronym is: • IBI-MYP: IBI_MULTIYEAR_PHY_005_002 (Reanalysis) • GLO-MYP: GLOBAL_REANALYSIS_PHY_001_031 (Reanalysis) • CORA: INSITU_GLO_TS_OA_REP_OBSERVATIONS_013_002_b (Observations) • ARMOR: MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 (Reprocessed observations) The figure comprises ensemble mean (blue line) and the ensemble spread (grey shaded). Details on the product are given in the corresponding PUM for this OMI as well as the CMEMS Ocean State Report: von Schuckmann et al., 2016; von Schuckmann et al., 2018. '''CONTEXT''' Change in OHC is a key player in ocean-atmosphere interactions and sea level change (WCRP, 2018) and can impact marine ecosystems and human livelihoods (IPCC, 2019). Additionally, OHC is one of the six Global Climate Indicators recommended by the World Meterological Organisation (WMO, 2017). In the last decades, the upper North Atlantic Ocean experienced a reversal of climatic trends for temperature and salinity. While the period 1990-2004 is characterized by decadal-scale ocean warming, the period 2005-2014 shows a substantial cooling and freshening. Such variations are discussed to be linked to ocean internal dynamics, and air-sea interactions (Fox-Kemper et al., 2021; Collins et al., 2019; Robson et al 2016). Together with changes linked to the connectivity between the North Atlantic Ocean and the Mediterranean Sea (Masina et al., 2022), these variations affect the temporal evolution of regional ocean heat content in the IBI region. Recent studies (de Pascual-Collar et al., 2023) highlight the key role that subsurface water masses play in the OHC trends in the IBI region. These studies conclude that the vertically integrated trend is the result of different trends (both positive and negative) contributing at different layers. Therefore, the lack of representativeness of the OHC trends in the surface-intermediate waters (from 0 to 1000 m) causes the trends in intermediate and deep waters (from 1000 m to 2000 m) to be masked when they are calculated by integrating the upper layers of the ocean (from surface down to 2000 m). '''CMEMS KEY FINDINGS''' The ensemble mean OHC anomaly time series over the Iberia-Biscay-Ireland region are dominated by strong year-to-year variations, and an ocean warming trend of 0.41±0.4 W/m2 is barely significant. '''Figure caption''' Time series of annual mean area averaged ocean heat content in the Iberia-Biscay-Ireland region (basin wide) and integrated over the 0-2000m depth layer during 1993-2022: ensemble mean (blue line) and ensemble spread (shaded area). The ensemble mean is based on different data products i.e., the IBI Reanalysis, global ocean reanalysis, and the global observational based products CORA, and ARMOR3D. Trend of ensemble mean (dashed line and bottom-right box) with 95% confidence interval computed in the period 1993-2022. Details on the products are given in the corresponding PUM and QUID for this OMI. '''DOI (product):''' https://doi.org/10.48670/mds-00316

  • Maisons éclusières sur les départements de la Gironde et du Lot-et-Garonne.

  • It's a study of MPA connectivity with assessment of : -size -shape -spacing between each MPA

  • '''DEFINITION''' The time series are derived from the regional chlorophyll reprocessed (MY) product as distributed by CMEMS. This dataset, derived from multi-sensor (SeaStar-SeaWiFS, AQUA-MODIS, NOAA20-VIIRS, NPP-VIIRS, Envisat-MERIS and Sentinel3-OLCI) Rrs spectra produced by CNR using an in-house processing chain, is obtained by means of the Mediterranean Ocean Colour regional algorithms: an updated version of the MedOC4 (Case 1 (off-shore) waters, Volpe et al., 2019, with new coefficients) and AD4 (Case 2 (coastal) waters, Berthon and Zibordi, 2004). The processing chain and the techniques used for algorithms merging are detailed in Colella et al. (2023). Monthly regional mean values are calculated by performing the average of 2D monthly mean (weighted by pixel area) over the region of interest. The deseasonalized time series is obtained by applying the X-11 seasonal adjustment methodology on the original time series as described in Colella et al. (2016), and then the Mann-Kendall test (Mann, 1945; Kendall, 1975) and Sens’s method (Sen, 1968) are subsequently applied to obtain the magnitude of trend. '''CONTEXT''' Phytoplankton and chlorophyll concentration as a proxy for phytoplankton respond rapidly to changes in environmental conditions, such as light, temperature, nutrients and mixing (Colella et al. 2016). The character of the response depends on the nature of the change drivers, and ranges from seasonal cycles to decadal oscillations (Basterretxea et al. 2018). Therefore, it is of critical importance to monitor chlorophyll concentration at multiple temporal and spatial scales, in order to be able to separate potential long-term climate signals from natural variability in the short term. In particular, phytoplankton in the Mediterranean Sea is known to respond to climate variability associated with the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO) (Basterretxea et al. 2018, Colella et al. 2016). '''KEY FINDINGS''' In the Mediterranean Sea, the average chlorophyll trend for the 1997–2024 period is slightly negative, at -0.77 ± 0.59% per year, reinforcing the findings of the previous releases. This result contrasts with the analysis by Sathyendranath et al. (2018), which reported increasing chlorophyll concentrations across all European seas. From around 2010–2011 onward, excluding the 2018–2019 period, a noticeable decline in chlorophyll levels is evident in the deseasonalized time series (green line) and in the observed maxima (grey line), particularly from 2015. This sustained decline over the past decade contributes to the overall negative trend observed in the Mediterranean Sea. '''DOI (product):''' https://doi.org/10.48670/moi-00259