Creation year

2024

446 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
Resolution
From 1 - 10 / 446
  • This product displays for DDT, DDE, and DDD, positions with percentages of all available data values per group of animals that are present in EMODnet regional contaminants aggregated datasets, v2024. The product displays positions for all available years.

  • The Southern Ocean plays a fundamental role in regulating the global climate. This ocean also contains a rich and highly productive ecosystem, potentially vulnerable to climate change. Very large national and international efforts are directed towards the modeling of physical oceanographic processes to predict the response of the Southern Ocean to global climate change and the role played by the large-scale ocean climate processes. However, these modeling efforts are greatly limited by the lack of in situ measurements, especially at high latitudes and during winter months. The standard data that are needed to study ocean circulation are vertical profiles of temperature and salinity, from which we can deduce the density of seawater. These are collected with CTD (Conductivity-Temperature-Depth) sensors that are usually deployed on research vessels or, more recently, on autonomous Argo profilers. The use of conventional research vessels to collect these data is very expensive, and does not guarantee access to areas where sea ice is found at the surface of the ocean during the winter months. A recent alternative is the use of autonomous Argo floats. However, this technology is not easy to use in glaciated areas. In this context, the collection of hydrographic profiles from CTDs mounted on marine mammals is very advantageous. The choice of species, gender or age can be done to selectively obtain data in particularly under-sampled areas such as under the sea ice or on continental shelves. Among marine mammals, elephant seals are particularly interesting. Indeed, they have the particularity to continuously dive to great depths (590 ± 200 m, with maxima around 2000 m) for long durations (average length of a dive 25 ± 15 min, maximum 80 min). A Conductivity-Temperature-Depth Satellite Relay Data Logger (CTD-SRDLs) has been developed in the early 2000s to sample temperature and salinity vertical profiles during marine mammal dives (Boehme et al. 2009, Fedak 2013). The CTD-SRDL is attached to the seal on land, then it records hydrographic profiles during its foraging trips, sending the data by satellite ARGOS whenever the seal goes back to the surface.While the principle intent of seal instrumentation was to improve understanding of seal foraging strategies (Biuw et al., 2007), it has also provided as a by-product a viable and cost-effective method of sampling hydrographic properties in many regions of the Southern Ocean (Charrassin et al., 2008; Roquet et al., 2013).

  • '''DEFINITION''' The product OMI_IBI_CURRENTS_VOLTRANS_section_integrated_anomalies is defined as the time series of annual mean volume transport calculated across a set of vertical ocean sections. These sections have been chosen to be representative of the temporal variability of various ocean currents within the IBI domain. The currents that are monitored include: transport towards the North Sea through Rockall Trough (RTE) (Holliday et al., 2008; Lozier and Stewart, 2008), Canary Current (CC) (Knoll et al. 2002, Mason et al. 2011), Azores Current (AC) (Mason et al., 2011), Algerian Current (ALG) (Tintoré et al, 1988; Benzohra and Millot, 1995; Font et al., 1998), and net transport along the 48ºN latitude parallel (N48) (see OMI Figure). To provide ensemble-based results, four Copernicus products have been used. Among these products are three reanalysis products (GLO-REA, IBI-REA and MED-REA) and one product obtained from reprocessed observations (GLO-ARM). • GLO-REA: GLOBAL_MULTIYEAR_PHY_001_030 (Reanalysis) • IBI-REA: IBI_MULTIYEAR_PHY_005_002 (Reanalysis) • MED-REA: MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 (Reprocessed observations) • MED-REA: MEDSEA_MULTIYEAR_PHY_006_004MEDSEA_MULTIYEAR_PHY_006_004 (Reanalysis) The time series comprises the ensemble mean (blue line), the ensemble spread (grey shaded area), and the mean transport with the sign reversed (red dashed line) to indicate the threshold of anomaly values that would entail a reversal of the current transport. Additionally, the analysis of trends in the time series at the 95% confidence interval is included in the bottom right corner of each diagram. Details on the product are given in the corresponding Product User Manual (de Pascual-Collar et al., 2024a) and QUality Information Document (de Pascual-Collar et al., 2024b) as well as the CMEMS Ocean State Report: de Pascual-Collar et al., 2024c. '''CONTEXT''' The IBI area is a very complex region characterized by a remarkable variety of ocean currents. Among them, Podemos destacar las que se originan como resultado del closure of the North Atlantic Drift (Mason et al., 2011; Holliday et al., 2008; Peliz et al., 2007; Bower et al., 2002; Knoll et al., 2002; Pérez et al., 2001; Jia, 2000), las corrientes subsuperficiales que fluyen hacia el norte a lo largo del talud continental (de Pascual-Collar et al., 2019; Pascual et al., 2018; Machin et al., 2010; Fricourt et al., 2007; Knoll et al., 2002; Mazé et al., 1997; White & Bowyer, 1997). Y las corrientes de intercambio que se producen en el Estrecho de Gibraltar y el Mar de Alboran (Sotillo et al., 2016; Font et al., 1998; Benzohra and Millot, 1995; Tintoré et al., 1988). The variability of ocean currents in the IBI domain is relevant to the global thermohaline circulation and other climatic and environmental issues. For example, as discussed by Fasullo and Trenberth (2008), subtropical gyres play a crucial role in the meridional energy balance. The poleward salt transport of Mediterranean water, driven by subsurface slope currents, has significant implications for salinity anomalies in the Rockall Trough and the Nordic Seas, as studied by Holliday (2003), Holliday et al. (2008), and Bozec et al. (2011). The Algerian current serves as the sole pathway for Atlantic Water to reach the Western Mediterranean. '''CMEMS KEY FINDINGS''' The volume transport time series show periods in which the different monitored currents exhibited significantly high or low variability. In this regard, we can mention the periods 1997-1998 and 2014-2015 for the RTE current, the period 2012-2014 in the N48 section, the years 2006 and 2017 for the ALG current, the year 2021 for the AC current, and the period 2009-2012 for the CC current. Additionally, periods are detected where the anomalies are large enough (in absolute value) to indicate a reversal of the net transport of the current. This is the case for the years 1999, 2003, and 2012-2014 in the N48 section (with a net transport towards the north), the year 2017 in the ALC current (with net transport towards the west), and the year 2010 in the CC current (with net transport towards the north). The trend analysis of the monitored currents does not detect any significant trends over the analyzed period (1993-2022). However, the confidence interval for the trend in the RTE section is on the verge of rejecting the hypothesis of no trend. '''Figure caption''' Annual anomalies of cross-section volume transport in monitoring sections RTE, N48, AC, ALC, and CC. Time series computed and averaged from different Copernicus Marine products for each window (see section Definition) providing a multi-product result. The blue line represents the ensemble mean, and shaded grey areas represent the standard deviation of the ensemble. Red dashed lines depict the velocity value at which the direction of the current reverses. This aligns with the average transport value (with sign reversed) and the point where absolute transport becomes zero. The analysis of trends (at 95% confidence interval) computed in the period 1993–2021 is included (bottom right box). Trend lines (gray dashed line) are only included in the figures when a significant trend is obtained. '''DOI (product):''' https://doi.org/10.48670/mds-00351

  • This product displays for DDT, DDE, and DDD, positions with values counts that have been measured per matrix and are present in EMODnet regional contaminants aggregated datasets, v2024. The product displays positions for all available years.

  • EMODnet Chemistry aims to provide access to marine chemistry data sets and derived data products concerning eutrophication, ocean acidification, contaminants and litter. The chosen parameters are relevant for the Marine Strategy Framework Directive (MSFD), in particular for descriptors 5, 8, 9 and 10. The datasets contain standardized, harmonized and validated data collections from seafloor litter. Datasets concerning seafloor litter data are loaded in a central database after a semi-automated validation phase. Once loaded, a data assessment is performed in order to check data consistency and potential errors are corrected thanks to a feedback loop with data originators. EMODnet seafloor litter data and database are hosted and maintained by ‘Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Division of Oceanography (OGS/NODC)’ from Italy. For seafloor litter, the harmonized datasets contain all unrestricted EMODnet Chemistry data on seafloor litter data. Data are formatted following Guidelines and forms for gathering marine litter data, which can be found at: https://dx.doi.org/10.6092/15c0d34c-a01a-4091-91ac-7c4f561ab508 The updated vocabularies of admitted values are available at: https://vocab.seadatanet.org/search https://vocab.ices.dk/ The harmonized datasets can be downloaded as EMODnet Sea-floor litter data format version 1.0, which is a csv file, tab separated values.

  • '''Short description:''' For the Atlantic Ocean - The product contains daily Level-3 sea surface wind with a 1km horizontal pixel spacing using Synthetic Aperture Radar (SAR) observations and their collocated European Centre for Medium-Range Weather Forecasts (ECMWF) model outputs. Products are processed homogeneously starting from the L2OCN products. '''DOI (product) :''' https://doi.org/10.48670/mds-00339

  • This product displays for Naphthalene, positions with values counts that have been measured per matrix and are present in EMODnet regional contaminants aggregated datasets, v2024. The product displays positions for all available years.

  • This Level 2 product provides marine reflectances from the VENµS mission, processed with the Polymer algorithm, on a subset of sites with coastal or inland areas. VENµS (Vegetation and Environment monitoring on a New Micro-Satellite) is a Franco-Israeli satellite launched in 2017, dedicated to the fine and regular monitoring of terrestrial vegetation, in particular cultivated areas, forests, protected natural areas, etc. The images acquired in 12 spectral bands by a camera provided by CNES, on a selection of about one hundred scientific sites spread over the planet, are of high spatial (5 m) and temporal resolution. The lifetime of the VENµS satellite has been divided into two phases: a first phase VM1 at an altitude of 720 km with a 2-day revisit, a native spatial resolution of 5.3 m and a swath of 27.6 km from August 2017 to November 2020, and a second phase VM5 at an altitude of 560 km with a daily revisit, a native spatial resolution of 4.1 m and a swath of 21.3 km from March 2022 to July 2024. VENµS is the first sensor on board an orbiting satellite to combine such revisit frequency and spatial finesse for vegetation monitoring. A subset of sites with coastal areas or inland waters have been identified to generate Level 2 data dedicated to marine reflectance. The geographical areas covered are given through a kmz file, see below to download it. This Level 2 data product has been processed using the Polymer algorithm developed by Hygeos (https://hygeos.com/en/polymer/) and provides marine reflectances for the VENµS bands from 420 to 865 nm. These reflectances, without units, include a bidirectional normalization for the Sun at nadir and the observer at nadir. VENµS data products (Level-1, Level-2 and Level-3) are primarily generated with the MAJA algorithm, further information can be found on THEIA website: https://www.theia-land.fr/en/product/venus/

  • This product displays for Anthracene, positions with values counts that have been measured per matrix for each year and are present in EMODnet regional contaminants aggregated datasets, v2024. The product displays positions for every available year.