CMEMS
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Resolution
-
Hauteurs significatives de vagues (SWH) et vitesse du vent, mesurées le long de la trace par les satellites altimétriques CFOSAT (nadir), Sentinel-3A et Sentinel-3B, Jason-3, Saral-AltiKa, Cryosat-2 et HY-2B, en temps quasi-réel (NRT), sur une couverture globale (-66°S/66+N pour Jason-3, -80°S/80°N pour Sentinel-3A et Saral/AltiKa). Un fichier contenant les SWH valides est produit pour chaque mission et pour une fenêtre de temps de 3 heures. Il contient les SWH filtrées (VAVH), les SWH non filtrées (VAVH_UNFILTERED) et la vitesse du vent (wind_speed). Les mesures de hauteurs de vagues sont calculées à partir du front de montée de la forme d'onde altimétrique. Pour Sentinel-3A et 3B, elles sont déduites de l'altimètre SAR.
-
'''Short description:''' For the Global Ocean- In-situ observation delivered in delayed mode. This In Situ delayed mode product integrates the best available version of in situ oxygen, chlorophyll / fluorescence and nutrients data. '''DOI (product) :''' https://doi.org/10.17882/86207
-
'''This product has been archived''' '''DEFINITION''' The temporal evolution of thermosteric sea level in an ocean layer is obtained from an integration of temperature driven ocean density variations, which are subtracted from a reference climatology to obtain the fluctuations from an average field. The regional thermosteric sea level values are then averaged from 60°S-60°N aiming to monitor interannual to long term global sea level variations caused by temperature driven ocean volume changes through thermal expansion as expressed in meters (m). '''CONTEXT''' The global mean sea level is reflecting changes in the Earth’s climate system in response to natural and anthropogenic forcing factors such as ocean warming, land ice mass loss and changes in water storage in continental river basins. Thermosteric sea-level variations result from temperature related density changes in sea water associated with volume expansion and contraction. Global thermosteric sea level rise caused by ocean warming is known as one of the major drivers of contemporary global mean sea level rise (Cazenave et al., 2018; Oppenheimer et al., 2019). '''CMEMS KEY FINDINGS''' Since the year 2005 the upper (0-2000m) near-global (60°S-60°N) thermosteric sea level rises at a rate of 1.3±0.2 mm/year. Note: The key findings will be updated annually in November, in line with OMI evolutions. '''DOI (product):''' https://doi.org/10.48670/moi-00240
-
'''This product has been archived''' '''DEFINITION''' Significant wave height (SWH), expressed in metres, is the average height of the highest one-third of waves. This OMI provides time series of seasonal mean and extreme SWH values in three oceanic regions as well as their trends from 2002 to 2020, computed from the reprocessed global L4 SWH product (WAVE_GLO_PHY_SWH_L4_MY_014_007). The extreme SWH is defined as the 95th percentile of the daily maximum of SWH over the chosen period and region. The 95th percentile represents the value below which 95% of the data points fall, indicating higher wave heights than usual. The mean and the 95th percentile of SWH are calculated for two seasons of the year to take into account the seasonal variability of waves (January, February, and March, and July, August, and September) and are in m while the trends are in cm/yr. '''CONTEXT''' Grasping the nature of global ocean surface waves, their variability, and their long-term interannual shifts is essential for climate research and diverse oceanic and coastal applications. The sixth IPCC Assessment Report underscores the significant role waves play in extreme sea level events (Mentaschi et al., 2017), flooding (Storlazzi et al., 2018), and coastal erosion (Barnard et al., 2017). Additionally, waves impact ocean circulation and mediate interactions between air and sea (Donelan et al., 1997) as well as sea-ice interactions (Thomas et al., 2019). Studying these long-term and interannual changes demands precise time series data spanning several decades. Until now, such records have been available only from global model reanalyses or localised in situ observations. While buoy data are valuable, they offer limited local insights and are especially scarce in the southern hemisphere. In contrast, altimeters deliver global, high-quality measurements of significant wave heights (SWH) (Gommenginger et al., 2002). The growing satellite record of SWH now facilitates more extensive global and long-term analyses. By using SWH data from a multi-mission altimetric product from 2002 to 2020, we can calculate global mean SWH and extreme SWH and evaluate their trends. '''KEY FINDINGS''' Over the period from 2002 to 2020, positive trends in both Significant Wave Height (SWH) and extreme SWH are mostly found in the southern hemisphere. The 95th percentile of wave heights (q95), increases more rapidly than the average values, indicating that extreme waves are growing faster than the average wave height. In the North Atlantic, SWH has increased in summertime (July August September) and decreased during the wintertime: the trend for the 95th percentile SWH is decreasing by 2.1 ± 3.3 cm/year, while the mean SWH shows a decreasing trend of 2.2 ± 1.76 cm/year. In the south of Australia, in boreal winter, the 95th percentile SWH is increasing at a rate of 2.6 ± 1.5 cm/year (a), with the mean SWH increasing by 0.7 ± 0.64 cm/year (b). Finally, in the Antarctic Circumpolar Current, also in boreal winter, the 95th percentile SWH trend is 3.2 ± 2.15 cm/year (a) and the mean SWH trend is 1.4 ± 0.82 cm/year (b). This variation highlights that waves evolve differently across different basins and seasons, illustrating the complex and region-specific nature of wave height trends. A full discussion regarding this OMI can be found in A. Laloue et al. (2024). '''DOI (product):''' https://doi.org/10.48670/mds-00352
-
'''DEFINITION''' Time mean meridional Eulerian streamfunctions are computed using the velocity field estimate provided by the Copernicus Marine Mediterranean Sea reanalysis over the period from 1987 to the year preceding the current one [-1Y], operationally extended yearly. The Eulerian meridional streamfunction is evaluated by integrating meridional velocity daily data first in a vertical direction, then in a meridional direction, and finally averaging over the reanalysis period. The Mediterranean overturning indices are derived for the eastern and western Mediterranean Sea by computing the annual streamfunction in the two areas separated by the Strait of Sicily around 36.5°N, and then considering the associated maxima. In each case a geographical constraint focused the computation on the main region of interest. For the western index, we focused on deep-water formation regions, thus excluding both the effect of shallow physical processes and the Gibraltar net inflow. For the eastern index, we investigate the Levantine and Cretan areas corresponding to the strongest meridional overturning cell locations, thus only a zonal constraint is defined. Time series of annual mean values is provided for the Mediterranean Sea using the Mediterranean 1/24o eddy resolving reanalysis (Escudier et al., 2020, 2021). More details can be found in the Copernicus Marine Ocean State Report issue 4 (OSR4, von Schuckmann et al., 2020) Section 2.4 (Lyubartsev et al., 2020) and in the QUID. '''CONTEXT''' The western and eastern Mediterranean clockwise meridional overturning circulation is connected to deep-water formation processes. The Mediterranean Sea 1/24o eddy resolving reanalysis (MEDSEA_MULTIYEAR_PHY_006_004, Escudier et al., 2020, 2021) is used to show the interannual variability of the Meridional Overturning Index. Details on the product are delivered in the PUM and QUID of this OMI. The Mediterranean Meridional Overturning Index is defined here as the maxima of the clockwise cells in the eastern and western Mediterranean Sea and is associated with deep and intermediate water mass formation processes that occur in specific areas of the basin: Gulf of Lion, Southern Adriatic Sea, Cretan Sea and Rhodes Gyre (Pinardi et al., 2015). As in the global ocean, the overturning circulation of the western and eastern Mediterranean are paramount to determine the stratification of the basins (Cessi, 2019). In turn, the stratification and deep water formation mediate the exchange of oxygen and other tracers between the surface and the deep ocean (e.g., Johnson et al., 2009; Yoon et al., 2018). In this sense, the overturning indices are potential gauges of the ecosystem health of the Mediterranean Sea, and in particular they could instruct early warning indices for the Mediterranean Sea to support the Sustainable Development Goal (SDG) 13 Target 13.3. '''CMEMS KEY FINDINGS''' The western and eastern Mediterranean overturning indices (WMOI and EMOI) are synthetic indices of changes in the thermohaline properties of the Mediterranean basin related to changes in the main drivers of the basin scale circulation. The western sub-basin clockwise overturning circulation is associated with the deep-water formation area of the Gulf of Lion, while the eastern clockwise meridional overturning circulation is composed of multiple cells associated with different intermediate and deep-water sources in the Levantine, Aegean, and Adriatic Seas. On average, the EMOI shows higher values than the WMOI indicating a more vigorous overturning circulation in eastern Mediterranean. The difference is mostly related to the occurrence of the eastern Mediterranean transient (EMT) climatic event, and linked to a peak of the EMOI in 1992 (Roether et al. 1996, 2014, Gertman et al. 2006). In 1999, the difference between the two indices started to decrease because EMT water masses reached the Sicily Strait flowing into the western Mediterranean Sea (Schroeder et al., 2016). The western peak in 2006 is discussed to be linked to anomalous deep-water formation during the Western Mediterranean Transition (Smith, 2008; Schroeder et al., 2016). Thus, the WMOI and EMOI indices are a useful tool for long-term climate monitoring of overturning changes in the Mediterranean Sea. '''DOI (product):''' https://doi.org/10.48670/mds-00317
-
'''Short description:''' Global Ocean - near real-time (NRT) in situ quality controlled observations, hourly updated and distributed by INSTAC within 24-48 hours from acquisition in average. Data are collected mainly through global networks (Argo, OceanSites, GOSUD, EGO) and through the GTS '''DOI (product) :''' https://doi.org/10.48670/moi-00036
-
'''Short description:''' Altimeter satellite along-track sea surface heights anomalies (SLA) computed with respect to a twenty-year [1993, 2012] mean with a 1Hz (~7km) and 5Hz (~1km) sampling. It serves in near-real time applications. This product is processed by the DUACS multimission altimeter data processing system. It processes data from all altimeter missions available (e.g. Sentinel-6A, Jason-3, Sentinel-3A, Sentinel-3B, Saral/AltiKa, Cryosat-2, HY-2B). The system exploits the most recent datasets available based on the enhanced OGDR/NRT+IGDR/STC production. All the missions are homogenized with respect to a reference mission. Part of the processing is fitted to the European Seas. (see QUID document or http://duacs.cls.fr [http://duacs.cls.fr] pages for processing details). The product gives additional variables (e.g. Mean Dynamic Topography, Dynamic Atmospheric Correction, Ocean Tides, Long Wavelength Errors) that can be used to change the physical content for specific needs (see PUM document for details) '''Associated products''' A time invariant product http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_NOISE_L4_STATIC_008_033 [http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_NOISE_L4_STATIC_008_033] describing the noise level of along-track measurements is available. It is associated to the sla_filtered variable. It is a gridded product. One file is provided for the global ocean and those values must be applied for Arctic and Europe products. For Mediterranean and Black seas, one value is given in the QUID document. '''DOI (product) :''' https://doi.org/10.48670/moi-00140
-
'''Short description:''' For the Global Ocean - The product contains hourly Level-4 sea surface wind and stress fields at 0.125 and 0.25 degrees horizontal spatial resolution. Scatterometer observations and their collocated European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis model variables are used to calculate temporally-averaged difference fields. These fields are used to correct for persistent biases in hourly ECMWF ERA5 model fields. Bias corrections are based on scatterometer observations from Metop-A, Metop-B, Metop-C ASCAT (0.125 degrees) and QuikSCAT SeaWinds, ERS-1 and ERS-2 SCAT (0.25 degrees). The product provides stress-equivalent wind and stress variables as well as their divergence and curl. The applied bias corrections, the standard deviation of the differences (for wind and stress fields) and difference of variances (for divergence and curl fields) are included in the product. '''DOI (product) :''' https://doi.org/10.48670/moi-00185
-
'''Short description: ''' For the '''Global''' Ocean '''Satellite Observations''', ACRI-ST company (Sophia Antipolis, France) is providing '''Bio-Geo-Chemical (BGC)''' products based on the '''Copernicus-GlobColour''' processor. * Upstreams: SeaWiFS, MODIS, MERIS, VIIRS-SNPP & JPSS1, OLCI-S3A & S3B for the '''""multi""''' products, and S3A & S3B only for the '''""olci""''' products. * Variables: Chlorophyll-a ('''CHL'''), Gradient of Chlorophyll-a ('''CHL_gradient'''), Phytoplankton Functional types and sizes ('''PFT'''), Suspended Matter ('''SPM'''), Secchi Transparency Depth ('''ZSD'''), Diffuse Attenuation ('''KD490'''), Particulate Backscattering ('''BBP'''), Absorption Coef. ('''CDM''') and Reflectance ('''RRS'''). * Temporal resolutions: '''daily'''. * Spatial resolutions: '''4 km''' and a finer resolution based on olci '''300 meters''' inputs. * Recent products are organized in datasets called Near Real Time ('''NRT''') and long time-series (from 1997) in datasets called Multi-Years ('''MY'''). To find the '''Copernicus-GlobColour''' products in the catalogue, use the search keyword '''""GlobColour""'''. '''DOI (product) :''' https://doi.org/10.48670/moi-00280
-
'''DEFINITION''' The OMI_EXTREME_WAVE_NORTHWESTSHELF_swh_mean_and_anomaly_obs indicator is based on the computation of the 99th and the 1st percentiles from in situ data (observations). It is computed for the variable significant wave height (swh) measured by in situ buoys. The use of percentiles instead of annual maximum and minimum values, makes this extremes study less affected by individual data measurement errors. The percentiles are temporally averaged, and the spatial evolution is displayed, jointly with the anomaly in the target year. This study of extreme variability was first applied to sea level variable (Pérez Gómez et al 2016) and then extended to other essential variables, sea surface temperature and significant wave height (Pérez Gómez et al 2018). '''CONTEXT''' Projections on Climate Change foresee a future with a greater frequency of extreme sea states (Stott, 2016; Mitchell, 2006). The damages caused by severe wave storms can be considerable not only in infrastructure and buildings but also in the natural habitat, crops and ecosystems affected by erosion and flooding aggravated by the extreme wave heights. In addition, wave storms strongly hamper the maritime activities, especially in harbours. These extreme phenomena drive complex hydrodynamic processes, whose understanding is paramount for proper infrastructure management, design and maintenance (Goda, 2010). In recent years, there have been several studies searching possible trends in wave conditions focusing on both mean and extreme values of significant wave height using a multi-source approach with model reanalysis information with high variability in the time coverage, satellite altimeter records covering the last 30 years and in situ buoy measured data since the 1980s decade but with sparse information and gaps in the time series (e.g. Dodet et al., 2020; Timmermans et al., 2020; Young & Ribal, 2019). These studies highlight a remarkable interannual, seasonal and spatial variability of wave conditions and suggest that the possible observed trends are not clearly associated with anthropogenic forcing (Hochet et al. 2021, 2023). In the North Atlantic, the mean wave height shows some weak trends not very statistically significant. Young & Ribal (2019) found a mostly positive weak trend in the European Coasts while Timmermans et al. (2020) showed a weak negative trend in high latitudes, including the North Sea and even more intense in the Norwegian Sea. For extreme values, some authors have found a clearer positive trend in high percentiles (90th-99th) (Young et al., 2011; Young & Ribal, 2019). '''COPERNICUS MARINE SERVICE KEY FINDINGS''' The mean 99th percentiles showed in the area present a wide range from 2.5 meters in the English Channel with 0.3m of standard deviation (std), 3-5m in the southern and central North Sea with 0.3-0.6m of std, 4 meters in the Skagerrak Strait with 0.6m of std, 6-7m in the northern North Sea with 0.4-0.5m of std to 8 meters in the NorthWest of the British Isles with 0.8-1.0m of std. Results for this year show either low positive or negative anomalies between -0.3m and +0.4m, inside the margin of the standard deviation, in the English Channel, the Skagerrak Strait and the southern and central North Sea except in the station 6200046 with a positive anomaly of 0.8m and a slight negative anomaly (-0.1/-0.5m) inside the margin of the std in the NorthWest of the British Isles and the northern North Sea. '''DOI (product):''' https://doi.org/10.48670/moi-00270
Catalogue PIGMA