Keyword

/Ocean Temperature/Sea Surface Temperature

176 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
status
Resolution
From 1 - 10 / 176
  • The Joint Polar Satellite System (JPSS), starting with S-NPP launched on 28 October 2011, is the new generation of the US Polar Operational Environmental Satellites (POES). The Suomi National Polar-orbiting Partnership (S-NPP) is a collaboration between NASA and NOAA. NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS is a whiskbroom scanning radiometer, which takes measurements in the cross-track direction within a field of view of 112.56-deg using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3,060 km, providing global daily coverage for both day and night passes. VIIRS has 22 spectral bands covering the spectrum from 0.4-12 um, including 16 moderate resolution bands (M-bands). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10-minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 27GB/day. In addition to pixel-level earth locations, Sun-sensor geometry, and ancillary data from the NCEP global weather forecast, ACSPO outputs include four brightness temperatures (BTs) in M12 (3.7um), M14 (8.6um), M15 (11um), and M16 (12um) bands, and two reflectances in M5 (0.67um) and M7 (0.87um) bands. The reflectances are used for cloud identification. Beginning with ACSPO v2.60, all BTs and reflectances are destriped (Bouali and Ignatov, 2014) and resampled (Gladkova et al., 2016), to minimize the effect of bow-tie distortions and deletions. SSTs are retrieved from destriped BTs.SSTs are derived from BTs using the Multi-Channel SST (MCSST; night) and Non-Linear SST (NLSST; day) algorithms (Petrenko et al., 2014). An ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day/night, land, ice, twilight, and glint flags (Petrenko et al., 2010). Fill values are reported in all invalid pixels, including those with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), four BTs in M12/14/15/16 (included for those users interested in direct "radiance assimilation", e.g., NOAA NCEP, NASA GMAO, ECMWF) and two refelctances in M5/7 are reported, along with derived SST. Other variables include NCEP wind speed and ACSPO SST minus reference SST (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0). Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. Note that users of ACSPO data have the flexibility to ignore the ACSM and derive their own clear-sky mask, and apply it to BTs and SSTs. They may also ignore ACSPO SSTs, and derive their own SSTs from the original BTs.The ACSPO VIIRS L2P product is monitored and validated against quality controlled in situ data provided by NOAA in situ SST Quality Monitor system (iQuam; Xu and Ignatov, 2014) using another NOAA system, SST Quality Monitor (SQUAM; Dash et al, 2010). Corresponding clear-sky BTs are validated against RTM simulations in the Monitoring IR Clear-sky Radiances over Ocean for SST system (MICROS; Liang and Ignatov, 2011). A reduced size (1GB/day), equal-angle gridded (0.02-deg resolution), ACSPO L3U product is also available at https://podaac.jpl.nasa.gov/dataset/VIIRS_NPP-OSPO-L3U-v2.61, where gridded L2P SSTs with QL=5 only are reported, and BT layers omitted.

  • A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 platform (launched on 6 Feb 2009). This particular dataset is produced by the Natural Environment Research Council (NERC) Earth Observation Data Acquisition and Analysis Service (NEODAAS) in collaboration with the National Centre for Ocean Forecasting (NCOF) in the United Kingdom. The AVHRR is a space-borne scanning sensor on the National Oceanic and Atmospheric Administration (NOAA) family of Polar Orbiting Environmental Satellites (POES) having a operational legacy that traces back to the Television Infrared Observation Satellite-N (TIROS-N) launched in 1978. AVHRR instruments measure the radiance of the Earth in 5 (or 6) relatively wide spectral bands. The first two are centered around the red (0.6 micrometer) and near-infrared (0.9 micrometer) regions, the third one is located around 3.5 micrometer, and the last two sample the emitted thermal radiation, around 11 and 12 micrometers, respectively. The legacy 5 band instrument is known as AVHRR/2 while the more recent version, the AVHRR/3 (first carried on the NOAA-15 platform), acquires data in a 6th channel located at 1.6 micrometer. Typically the 11 and 12 micron channels are used to derive sea surface temperature (SST) sometimes in combination with the 3.5 micron channel. The highest ground resolution that can be obtained from the current AVHRR instruments is 1.1 km at nadir. The NOAA platforms are sun synchronous generally viewing the same earth location twice a day or more (latitude dependent) due to the relatively large AVHRR swath of approximately 2400 km. NEODAAS-Dundee acquires approximately 15 AVHRR direct broadcast High Resolution Picture Transmission (HRPT) passes per day over NW Europe and the Arctic. Each pass is approximately 15 minutes duration. These are immediately transferred to NEODAAS-Plymouth where they are processed into sea surface temperature (SST) products and converted to L2P specifications.

  • This dataset is produced by the Ocean and Sea Ice Satellite Application Facility (OSI SAF) from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument onboard the Meteosat Second Generation (MSG-1), Meteosat-8 satellite (launched on 28 August 2002). The dataset covers the Indian Ocean region with latitude of 60S-60N and longitude of 135W-15W. Level-3C SST, in the NetCDF format recommended by Group for High Resolution Sea Surface Temperature (GHRSST), is identical to Level-2P GHRSST products, 3 refers to gridded products and C to the fact that hourly products result from compositing 15 minutes (MSG) or 30 minutes (GOES-E) data. The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), OSI SAF is producing SST products in near real time from MSG/SEVIRI. SEVIRI level 1.5 data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. SST is retrieved from the SEVIRI infrared channels (10.8 and 12.0 micrometer) using a multispectral algorithm. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiatiave transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. Every 15 minutes slot is processed at full satellite resolution. The operational products are then produced by remapping over a 0.05-degree regular grid (60S-60N and 135W-15W) SST fields obtained by aggregating all 15-minute SST data available in one-hour time, and the priority being given to the value the closest in time to the product nominal hour. The product format is compliant with the GHRSST Data Specification (GDS) version 2. Version Description:

  • A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset for the North Atlantic Region (NAR) based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from Metop/AVHRR and SNPP/VIIRS. Global AVHRR level 1b data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. NAR SNPP/VIIRS level 0 data are acquired through direct readout and converted into l1b at CMS. SST is retrieved from the AVHRR and VIIRS infrared channels using a multispectral algorithm. This product is delivered as four six hourly collated files per day on a regular 2km grid. The product format is compliant with the GHRSST Data Specification (GDS) version 2.

  • The Joint Polar Satellite System (JPSS), starting with S-NPP launched on 28 October 2011, is the new generation of the US Polar Operational Environmental Satellites (POES). The Suomi National Polar-orbiting Partnership (S-NPP) is a collaboration between NASA and NOAA. The ACSPO SNPP/VIIRS L3U (Level 3 Uncollated) product is a gridded version of the ACSPO SNPP/VIIRS L2P product available here https://podaac.jpl.nasa.gov/dataset/VIIRS_NPP-OSPO-L2P-v2.61. The L3U output files are 10-minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 500MB/day. Fill values are reported at all invalid pixels, including pixels with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), the following layers are reported: SSTs, ACSPO clear-sky mask (ACSM; provided in each grid as part of l2p_flags, which also includes day/night, land, ice, twilight, and glint flags), NCEP wind speed, and ACSPO SST minus reference (Canadian Met Centre 0.1deg L4 SST; available at https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0 ). Only L2P SSTs with QL=5 were gridded, so all valid SSTs are recommended for the users. Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with valid SST. The ACSPO VIIRS L3U product is monitored and validated against iQuam in situ data (Xu and Ignatov, 2014) in SQUAM (Dash et al, 2010). Version Description:

  • A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian Meteorological Center. This dataset merges infrared satellite SST at varying points in the time series from the Advanced Very High Resolution Radiometer (AVHRR) from NOAA-18,19, the European Meteorological Operational-A (METOP-A) and Operational-B (METOP-B), and microwave data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-W satellite in conjunction with in situ observations of SST from drifting buoys and ships from the ICOADS program. It uses the previous days analysis as the background field for the statistical interpolation used to assimilate the satellite and in situ observations. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications. Version Description:

  • A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian Meteorological Center. This dataset merges infrared satellite SST at varying points in the time series from the (A)TSR series of radiometers from ERS-1, ERS-2 and Envisat, AVHRR from NOAA-16,17,18,19 and METOP-A, and microwave data from TMI, AMSR-E and Windsat in conjunction with in situ observations of SST from drifting buoys and ships from the ICOADS program. It uses the previous days analysis as the background field for the statistical interpolation used to assimilate the satellite and in situ observations. This dataset adheres to the GHRSST Data Processing Specification (GDS) version 2 format specifications.

  • A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis, produced daily on an operational basis at the Australian Bureau of Meteorology (BoM) using optimal interpolation (OI) on a global 0.25 degree grid. This Global Australian Multi-Sensor SST Analysis (GAMSSA) v1.0 system blends satellite SST observations from passive infrared and passive microwave radiometers with in situ data from ships, drifting buoys and moorings from the Global Telecommunications System (GTS). SST observations that have experienced recent surface wind speeds less than 6 m/s during the day or less than 2 m/s during night are rejected from the analysis. The processing results in daily foundation SST estimates that are largely free of nocturnal cooling and diurnal warming effects. Sea ice concentrations are supplied by the NOAA/NCEP 12.7 km sea ice analysis. In the absence of observations, the analysis relaxes to the Reynolds and Smith (1994) Monthly 1 degree SST climatology for 1961 - 1990.

  • A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish Meteorological Institute (DMI) using an optimal interpolation (OI) approach on a global 0.05 degree grid. The analysis is based upon nighttime GHRSST L2P skin and subskin SST observations from several satellites. The sensors include the Advanced Very High Resolution Radiometer (AVHRR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Visible Infrared Imager Radiometer Suite (VIIRS), and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. An ice field from the EUMETSAT OSI-SAF is used to mask out areas with ice. This dataset adheres to the version 2 GHRSST Data Processing Specification (GDS).

  • A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish Meteorological Institute (DMI) using an optimal interpolation (OI) approach on a global 0.05 degree grid. The analysis is based upon nighttime GHRSST L2P skin and subskin SST observations from several satellites. The sensors include the Advanced Very High Resolution Radiometer (AVHRR), the Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Visible Infrared Imager Radiometer Suite (VIIRS), and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. An ice field from the EUMETSAT OSI-SAF is used to mask out areas with ice. This dataset adheres to the version 2 GHRSST Data Processing Specification (GDS). Version Description: