Keyword

Oceanographic geographical features

1326 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1326
  • SpiArcBase is a software developed for the treatment of Sediment Profile images (SPIs). Sediment Profile Images (SPIs) are widely used for benthic ecological quality assessment under various environmental stressors. The processing of the information contained in SPIs is slow and its interpretation is largely operator dependent. SpiArcBase enhances the objectivity of the information extracted from SPIs, especially for the assessment of the apparent Redox Potential Discontinuity (aRPD). This software allows the user to create and manage a database containing original SPIs and corresponding derived pieces of information. Once you have downloaded it, you can ask for help and stablish a helpdesk.

  • This dataset provides extreme waves (Hs: significant wave height, Hb:breaking wave height, a proxy of the wave energy flux) simulated with the WWIII model, and extracted along global coastlines. Two simulations, including or not Tropical Cyclones (TCs) in the forcing wind field, are provided.

  • Daily air-sea heat fluxes dataset on the last 27 years (1992-2018). Global coverage with 0.25° resolution. Data is mainly coming from aggregated calibrated scatterometer datasets and numerical models. Main geophysical parameters are: sensible heat flux, latent heat flux, wind speed, SST, air temperature. Latest version : 4.1 released in June 2019.

  • Sediment Profile Images (SPIs) are commonly used to map physical, biological and chemical/nutrient gradients in benthic habitats. SpiArcBase is a software that has been developed for the analysis of Sediment Profile Images (SPIs). It has been conceived to improve the objectivity of extracted information (especially the apparent Redox Potential Discontinuity (aRPD). The software presents a graphical user interface designed to enhance the interpretation of features observed on SPIs in an objective manner and to facilitate image management and structures visualization via a data base.The software also allows for the storage of generated data and the automatic computation of a benthic habitat quality index. The facilities provided within JERICONext include access to the software through free downloading and assistance in its utilization.

  • CNR MED Sea Surface Temperature provides daily gap-free maps (L4) at 0.01 deg. x 0.01deg. horizontal resolution over the Mediterranean Sea. The data are obtained from infra-red measurements collected by satellite radiometers and statistical interpolation. It is the CMEMS sea surface temperature nominal operational product for the Mediterranean sea. Version Description:

  • A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time from the Advanced Very High Resolution Radiometer (AVHRR) on the European Meteorological Operational-A (MetOp-A)satellite (launched 19 Oct 2006). The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near real time from Metop/AVHRR. Global AVHRR level 1b data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. SST is retrieved from the AVHRR infrared channels (3.7, 10.8 and 12.0 micrometer) using a multispectral algorithm. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiatiave transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. This product is delivered at full resolution in satellite projection as metagranule corresponding to 3 minutes of acquisition. The product format is compliant with the GHRSST Data Specification (GDS) version 2.

  • These files contain NASA produced skin sea surface temperature (SST) products from the Infrared (IR) channels of the Visible and Infrared Imager/Radiometer Suite (VIIRS) onboard the Suomi-NPP satellite. VIIRS is a multi-disciplinary instrument that is also being flown on the Joint Polar Satellite System (JPSS) series of spacecraft, of which NOAA-20 is the first. JPSS is a multi-agency program that consolidates the polar orbiting spacecraft of NASA and the National Oceanic and Atmospheric Administration (NOAA). Suomi-NPP is the initial spacecraft in this series, and VIIRS is the successor to MODIS for Earth science data. VIIRS has 22 spectral bands ranging from 412 nm to 12 micron . There are 16 moderate-resolution bands (750m at nadir), 5 image-resolution bands (375 m), and one day-night band (DNB). VIIRS uses on-board pixel aggregation to reduce the growth in size of pixels away from nadir. Two SST products are contained in these files. The first is a skin SST produced separately for day and night observations, derived from the long wave IR 11 and 12 micron wavelength channels, using a modified nonlinear SST algorithm intended to provide continuity of SST products from heritage and current NASA sensors. At night, a second triple channel SST product is generated using the 3.7 , 11 and 12 micron IR channels, identified as SST_triple. Due to the sun glint in the 3.7 micron SST_triple can only be used at night. VIIRS L2P SST data have a 750 spatial resolution at nadir and are stored in ~288 five minute granules per day. Full global coverage is obtained each day. The production of VIIRS NASA L2P SST files is part of the Group for High Resolution Sea Surface Temperature (GHRSST) project and is a joint collaboration between the NASA Jet Propulsion Laboratory (JPL), the NASA Ocean Biology Processing Group (OBPG), and the Rosenstiel School of Marine and Atmospheric Science (RSMAS). Researchers at RSMAS were responsible for sea surface temperature algorithm development, error statistics and quality flagging, while the OBPG, as the NASA ground data system, is responsible for the production of VIIRS ocean products. JPL acquires VIIRS ocean granules from the OBPG and reformats them to the GHRSST L2P netCDF specification with complete metadata and is the official Physical Oceanography Data Archive (PO.DAAC) for SST. In mid-August, 2018, the RSMAS involvement in the VIIRS SST project ceased, and the subsequent fields are not maintained.The R2016.2 supersedes the previous v2016.0 datasets which can be found at https://doi.org/10.5067/GHVRS-2PN16

  • A final aggregated vulnerability index was obtained by combining all the partial indices belonging to each of the five vectors with V4 scores multiplied by −1 since Vector 4 indicators are of “resilience” rather than of “vulnerability”. Figures 6a and 6b show respectively map and cartogram of the geographical distribution obtained for this vector. As can be seen, except for most of Ireland, the Atlantic European coast ap- pears in redish colours corresponding to higher values of vulnerability.

  • The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Ocean and Sea Ice Satellite Application Facility (OSI SAF) is producing SST products in near realtime from Metop/AVHRR. Global AVHRR level 1b data are acquired at Meteo-France/Centre de Meteorologie Spatiale (CMS) through the EUMETSAT/EUMETCAST system. SST is retrieved from the AVHRR infrared channels (3.7, 10.8 and 12.0 m) using a multispectral algorithm. Atmospheric profiles of water vapor and temperature from a numerical weather prediction model, together with a radiative transfer model, are used to correct the multispectral algorithm for regional and seasonal biases due to changing atmospheric conditions. This product is delivered at full resolution in satellite projection as metagranule corresponding to 3 minutes of acquisition. The product format is compliant with the GHRSST Data Specification (GDS) version 2.

  • This L3U (Level 3 Uncollated) dataset contains global daily Sea Surface Temperature (SST) on a 0.02 degree grid resolution. It is produced by the National Oceanic and Atmospheric Administration (NOAA) Advanced Clear Sky Processor for Ocean (ACSPO) using L2P (Level 2 Preprocessed) product acquired from the Meteorological Operational satellite B (Metop-B) Advanced Very High Resolution Radiometer 3 (AVHRR/3) (https://podaac.jpl.nasa.gov/dataset/AVHRRF_MB-STAR-L2P-v2.80 ) in Full Resolution Area Coverage (FRAC) mode as input. It is distributed as 10-minute granules in netCDF-4 format, compliant with the Group for High Resolution Sea Surface Temperature (GHRSST) Data Specification version 2 (GDS2). There are 144 granules per 24-hour interval. Fill values are reported in all invalid pixels, including land pixels with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river), and up to 5 km inland, the following major layers are reported: SSTs and ACSPO clear-sky mask (ACSM; provided in each grid as part of l2p_flags, which also includes day/night, land, ice, twilight, and glint flags). Only input L2P SSTs with QL=5 were gridded, so all valid SSTs are recommended for the users. Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with valid SST. Ancillary layers include wind speed and ACSPO minus reference Canadian Meteorological Centre (CMC) Level 4 (L4) SST. The ACSPO Metop-B AVHRR FRAC L3U product is monitored and validated against iQuam in situ data (Xu and Ignatov, 2014) in the NOAA SST Quality Monitor (SQUAM) system (Dash et al, 2010). SST imagery and clear-sky mask are evaluated, and checked for consistency with L2P and other satellites/sensors SST products, in the NOAA ACSPO Regional Monitor for SST (ARMS) system. More information about the dataset is found at AVHRRF_MB-STAR-L2P-v2.80 and in (Pryamitsyn et al., 2021).